Python中利用SSDInceptionV2FeatureExtractor()进行人脸检测与识别
发布时间:2023-12-19 01:20:29
使用SSDInceptionV2FeatureExtractor()进行人脸检测和识别的示例代码如下:
import cv2
import tensorflow as tf
from tensorflow.python.client import timeline
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# 加载模型
PATH_TO_CKPT = 'ssd_inception_v2.pb'
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载标签映射
PATH_TO_LABELS = 'face_label_map.pbtxt'
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=1, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 读取图像并进行预处理
image_path = 'test_image.jpg'
image = cv2.imread(image_path)
image_expanded = np.expand_dims(image, axis=0)
# 定义输入输出节点名称
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# 运行推理
with tf.Session(graph=detection_graph) as sess:
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
# Perform detection
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded},
options=options,
run_metadata=run_metadata
)
# 显示推理结果
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8
)
# 保存推理结果
cv2.imwrite('result.jpg', image)
# 显示推理时间
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(ctf)
在示例代码中,我们首先加载了SSDInceptionV2模型和标签映射。然后,我们读取了一个待测试的图像,并将其进行预处理。接下来,我们定义了输入节点和输出节点的名称,然后使用sess.run()方法运行推理。最后,我们使用visualization_utils库将检测结果可视化,并保存检测结果图像。同时,我们还使用tensorflow的timeline记录了推理过程的运行时间信息。
请注意,示例代码中的PATH_TO_CKPT、PATH_TO_LABELS和image_path需要根据实际情况修改为对应的文件路径。此外,如果你还没有安装相应的库和模块,需要先进行安装。
这只是一个简单的示例,你可以根据自己的需求进一步扩展和修改代码。通过这个例子,你可以利用SSDInceptionV2模型进行人脸检测和识别,并获取检测结果和推理时间信息。
