欢迎访问宙启技术站
智能推送

Python中基于SSDInceptionV2FeatureExtractor()的交通标志识别

发布时间:2023-12-19 01:15:00

交通标志识别是计算机视觉领域的常见任务之一。在Python中,我们可以使用TensorFlow中的SSDInceptionV2FeatureExtractor来进行交通标志识别。SSDInceptionV2FeatureExtractor是一种基于SSD (Single Shot MultiBox Detector) 及InceptionV2模型的特征提取器,能够提取图像中的特征,并根据这些特征来识别交通标志。

下面是一个使用SSDInceptionV2FeatureExtractor进行交通标志识别的示例:

首先,我们需要安装TensorFlow和其他相关依赖项。可以使用以下命令安装TensorFlow:

pip install tensorflow

接下来,我们需要下载交通标志识别的训练模型。可以在TensorFlow的Model Zoo中找到SSD Inception V2模型的下载链接。下载后,可以解压缩模型并将其保存在指定目录下。

接着,我们需要编写Python代码来加载模型并进行交通标志识别。以下是一个简单的示例:

import tensorflow as tf
import numpy as np
import cv2


def load_model(model_path):
    detection_graph = tf.Graph()
    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(model_path, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')

    return detection_graph


def preprocess_image(image):
    # Resize image to match the input size of the model
    resized_image = cv2.resize(image, (300, 300))
    # Convert image to RGB format
    rgb_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
    # Normalize image
    normalized_image = rgb_image.astype(float) / 255.0
    # Add an additional dimension to represent the batch size
    input_image = np.expand_dims(normalized_image, axis=0)

    return input_image


def detect_traffic_signs(image, graph):
    with graph.as_default():
        with tf.Session() as sess:
            # Get input and output tensors from the model
            image_tensor = sess.graph.get_tensor_by_name('image_tensor:0')
            boxes_tensor = sess.graph.get_tensor_by_name('detection_boxes:0')
            scores_tensor = sess.graph.get_tensor_by_name('detection_scores:0')
            classes_tensor = sess.graph.get_tensor_by_name('detection_classes:0')

            # Preprocess input image
            input_image = preprocess_image(image)

            # Run the model to get the predictions
            boxes, scores, classes = sess.run([boxes_tensor, scores_tensor, classes_tensor],
                                              feed_dict={image_tensor: input_image})

            # Loop through the predictions and filter out low confidence detections
            for i in range(len(scores[0])):
                if scores[0][i] > 0.5:
                    # Get bounding box coordinates
                    ymin, xmin, ymax, xmax = boxes[0][i]

                    # Draw bounding box on the image
                    cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)

    return image


def main():
    # Path to the downloaded model
    model_path = 'path/to/downloaded_model/frozen_inference_graph.pb'

    # Load the model
    detection_graph = load_model(model_path)

    # Load and preprocess the input image
    image = cv2.imread('path/to/input_image.jpg')
    input_image = preprocess_image(image)

    # Detect traffic signs
    output_image = detect_traffic_signs(image, detection_graph)

    # Display the output image
    cv2.imshow('Traffic Sign Detection', output_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


if __name__ == '__main__':
    main()

在上述代码中,我们首先定义了一个load_model函数,该函数用于加载训练好的模型。然后,我们定义了一个preprocess_image函数,用于对输入图像进行预处理。接下来,我们定义了一个detect_traffic_signs函数,该函数使用加载好的模型对输入图像进行交通标志的检测。最后,我们在main函数中调用这些函数来进行交通标志识别。

请注意,上述代码中的model_pathinput_image变量需要替换为适当的路径和输入图像。此外,还需要根据实际的模型结构来获取正确的输入和输出张量名称,并在代码中进行相应的更改。

希望以上示例能够帮助您使用SSDInceptionV2FeatureExtractor进行交通标志识别。请确保已正确安装TensorFlow并下载了适用的训练模型。