使用Python和SSDInceptionV2FeatureExtractor()实现动物检测与识别
发布时间:2023-12-19 01:19:09
动物检测与识别是计算机视觉中的一个重要应用领域。近年来,随着深度学习的发展,使用卷积神经网络(CNN)在图像中检测和识别动物越来越受到关注。本文将介绍如何使用Python和SSDInceptionV2FeatureExtractor()实现动物检测与识别,并提供一个简单的例子来说明其用法。
首先,我们需要准备相关的数据集。在本例中,我们将使用TensorFlow Object Detection API中的COCO数据集,其中包含了各种类别的动物图像。我们可以通过以下命令来下载数据集:
!wget http://images.cocodataset.org/zips/train2017.zip !unzip train2017.zip
接下来,我们需要安装TensorFlow Object Detection API。可以通过以下命令来安装:
!git clone https://github.com/tensorflow/models.git !cd models/research !protoc object_detection/protos/*.proto --python_out=. !python setup.py build !python setup.py install
完成安装后,我们可以开始编写代码。首先,我们需要导入相关的Python库和模块:
import os import numpy as np import tensorflow as tf from PIL import Image from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util
然后,我们需要定义一些常量和路径:
MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
PATH_TO_LABELS = 'models/research/object_detection/data/mscoco_label_map.pbtxt'
PATH_TO_MODEL = os.path.join('models/research/object_detection', MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_IMAGE = '/path/to/image.jpg'
NUM_CLASSES = 90
接下来,我们需要加载模型和标签映射文件:
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
然后,我们可以加载图像并进行检测和识别:
image = Image.open(PATH_TO_IMAGE)
image_np = np.array(image)
output_dict = run_inference_for_single_image(image_np, detection_graph)
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
# 显示图像
plt.figure(figsize=(12, 8))
plt.imshow(image_np)
plt.show()
最后,定义一个辅助函数run_inference_for_single_image()来执行图像的推理操作:
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
if 'detection_masks' in tensor_dict:
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
综上所述,我们使用Python和SSDInceptionV2FeatureExtractor()实现了动物检测与识别,并提供了一个简单的例子来说明其用法。通过以上步骤,我们可以加载模型、加载图像并进行检测和识别,最后将结果可视化显示出来。这样,我们就可以在Python中实现动物的检测与识别了。当然,这只是一个简单的示例,实际应用中还可以根据需要进行更多的扩展和优化。
