欢迎访问宙启技术站
智能推送

使用Python和SSDInceptionV2FeatureExtractor()实现动物检测与识别

发布时间:2023-12-19 01:19:09

动物检测与识别是计算机视觉中的一个重要应用领域。近年来,随着深度学习的发展,使用卷积神经网络(CNN)在图像中检测和识别动物越来越受到关注。本文将介绍如何使用Python和SSDInceptionV2FeatureExtractor()实现动物检测与识别,并提供一个简单的例子来说明其用法。

首先,我们需要准备相关的数据集。在本例中,我们将使用TensorFlow Object Detection API中的COCO数据集,其中包含了各种类别的动物图像。我们可以通过以下命令来下载数据集:

!wget http://images.cocodataset.org/zips/train2017.zip
!unzip train2017.zip

接下来,我们需要安装TensorFlow Object Detection API。可以通过以下命令来安装:

!git clone https://github.com/tensorflow/models.git
!cd models/research
!protoc object_detection/protos/*.proto --python_out=.
!python setup.py build
!python setup.py install

完成安装后,我们可以开始编写代码。首先,我们需要导入相关的Python库和模块:

import os
import numpy as np
import tensorflow as tf
from PIL import Image
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

然后,我们需要定义一些常量和路径:

MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
PATH_TO_LABELS = 'models/research/object_detection/data/mscoco_label_map.pbtxt'
PATH_TO_MODEL = os.path.join('models/research/object_detection', MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_IMAGE = '/path/to/image.jpg'
NUM_CLASSES = 90

接下来,我们需要加载模型和标签映射文件:

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

然后,我们可以加载图像并进行检测和识别:

image = Image.open(PATH_TO_IMAGE)
image_np = np.array(image)
output_dict = run_inference_for_single_image(image_np, detection_graph)
vis_util.visualize_boxes_and_labels_on_image_array(
    image_np,
    output_dict['detection_boxes'],
    output_dict['detection_classes'],
    output_dict['detection_scores'],
    category_index,
    instance_masks=output_dict.get('detection_masks'),
    use_normalized_coordinates=True,
    line_thickness=8)

# 显示图像
plt.figure(figsize=(12, 8))
plt.imshow(image_np)
plt.show()

最后,定义一个辅助函数run_inference_for_single_image()来执行图像的推理操作:

def run_inference_for_single_image(image, graph):
    with graph.as_default():
        with tf.Session() as sess:
            ops = tf.get_default_graph().get_operations()
            all_tensor_names = {output.name for op in ops for output in op.outputs}
            tensor_dict = {}
            for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:
                tensor_name = key + ':0'
                if tensor_name in all_tensor_names:
                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
            if 'detection_masks' in tensor_dict:
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
                
                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                    detection_masks, detection_boxes, image.shape[0], image.shape[1])
                detection_masks_reframed = tf.cast(
                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                
                tensor_dict['detection_masks'] = tf.expand_dims(
                    detection_masks_reframed, 0)
            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
            output_dict = sess.run(tensor_dict,
                                   feed_dict={image_tensor: np.expand_dims(image, 0)})
            
            output_dict['num_detections'] = int(output_dict['num_detections'][0])
            output_dict['detection_classes'] = output_dict[
                'detection_classes'][0].astype(np.uint8)
            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
            output_dict['detection_scores'] = output_dict['detection_scores'][0]
            if 'detection_masks' in output_dict:
                output_dict['detection_masks'] = output_dict['detection_masks'][0]
    return output_dict

综上所述,我们使用Python和SSDInceptionV2FeatureExtractor()实现了动物检测与识别,并提供了一个简单的例子来说明其用法。通过以上步骤,我们可以加载模型、加载图像并进行检测和识别,最后将结果可视化显示出来。这样,我们就可以在Python中实现动物的检测与识别了。当然,这只是一个简单的示例,实际应用中还可以根据需要进行更多的扩展和优化。