Python中利用object_detection.core.modelDetectionModel()进行目标追踪的步骤解析
发布时间:2024-01-11 06:07:22
在Python中使用object_detection.core.modelDetectionModel()进行目标追踪,可以按照以下步骤进行操作:
1. 导入所需的库和模块:
from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util from object_detection.core import modelDetectionModel import tensorflow as tf import numpy as np import cv2
2. 加载模型配置文件和标签文件:
MODEL_NAME = 'path_to_model_directory' PATH_TO_LABELS = 'path_to_label_map.pbtxt' detection_model = modelDetectionModel(MODEL_NAME) category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
其中,MODEL_NAME是模型的目录路径,PATH_TO_LABELS是标签文件的路径。
3. 定义目标追踪函数:
def run_inference_for_single_image(image, detection_graph):
with detection_graph.as_default():
with tf.Session() as sess:
# 获取输入和输出张量
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in ['num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
# 执行推理
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)})
# 处理输出
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
return output_dict
4. 打开视频流或摄像头输入:
video = cv2.VideoCapture('path_to_video_file') # 或 cv2.VideoCapture(0) 使用摄像头输入
5. 循环从视频流中读取帧并进行目标追踪:
while(video.isOpened()):
ret, frame = video.read()
if not ret:
break
# 转换颜色空间并调整尺寸
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_expanded = np.expand_dims(frame_rgb, axis=0)
# 进行目标追踪
output_dict = run_inference_for_single_image(frame_expanded, detection_model)
# 根据阈值筛选检测结果
threshold = 0.5
indices = np.where(output_dict['detection_scores'] > threshold)[0]
boxes = output_dict['detection_boxes'][indices]
classes = output_dict['detection_classes'][indices]
scores = output_dict['detection_scores'][indices]
# 在图像上绘制边界框和标签
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
line_thickness=8)
# 显示结果图像
cv2.imshow('Object Detection', cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
if cv2.waitKey(25) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
在这个示例中,我们首先导入了需要的库和模块。然后加载模型配置文件和标签文件,并使用modelDetectionModel()创建目标检测模型实例。接下来,定义了一个函数run_inference_for_single_image(),用于执行目标检测。在循环中,我们从视频流中读取每一帧图像,并将其转换为模型所需的输入格式。然后,调用run_inference_for_single_image()函数进行目标检测,并根据阈值筛选检测结果。最后,使用visualize_boxes_and_labels_on_image_array()函数在图像上绘制边界框和标签,然后显示结果图像。按下q键退出循环,并释放视频流和关闭窗口。
这是一个基本的使用object_detection.core.modelDetectionModel()进行目标追踪的例子。可以根据需要进行调整和扩展,例如可以对检测结果进行跟踪或将其保存到文件中。
