Python中如何利用object_detection.core.modelDetectionModel()进行多类别目标检测
发布时间:2024-01-11 06:04:40
在Python中,可以使用object_detection包的core.modelDetectionModel()函数进行多类别目标检测。这个函数接收一个model_dir参数,用于指定模型的路径。以下是一个使用例子,细分步骤进行说明:
步骤1:导入所需的库和模块
import numpy as np import tensorflow as tf from object_detection.core import model from object_detection.utils import visualization_utils as vis_util from object_detection.utils import label_map_util
步骤2:加载模型和标签映射文件
model_dir = 'path/to/model/directory' detection_model = model.DetectionModel(model_dir) detection_model.load_model() label_map_file = 'path/to/label/map/file' label_map = label_map_util.load_labelmap(label_map_file) label_categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True) category_index = label_map_util.create_category_index(label_categories)
步骤3:定义目标检测函数
def detect_objects(image_np):
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections = detection_model.detect(input_tensor)
num_detections = int(detections.pop('num_detections'))
detections = {key: detection[0, :num_detections].numpy() for key, detection in detections.items()}
detections['num_detections'] = num_detections
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
return detections
步骤4:加载图像文件并进行目标检测
image_file = 'path/to/image/file'
image_np = np.array(Image.open(image_file))
output_image_np = image_np.copy()
detections = detect_objects(image_np)
vis_util.visualize_boxes_and_labels_on_image_array(
output_image_np,
detections['detection_boxes'],
detections['detection_classes'],
detections['detection_scores'],
category_index,
instance_masks=detections.get('detection_masks_reframed', None),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=(10, 10))
plt.imshow(output_image_np)
plt.axis('off')
plt.show()
以上是一个基本的多类别目标检测的例子。首先,需要导入所需的库和模块。然后加载模型和标签映射文件。接下来,定义一个目标检测函数,它接收一个图像作为输入,并返回检测到的目标信息。最后,加载图像文件并将其用于目标检测,然后将检测结果可视化。
