欢迎访问宙启技术站
智能推送

Python中使用object_detection.core.modelDetectionModel()进行目标检测的步骤解析

发布时间:2024-01-11 06:01:22

在Python中,使用object_detection.core.modelDetectionModel()函数进行目标检测,需要经过以下步骤解析:

1. 导入相关库和模块:

from object_detection.core import model
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import label_map_util

2. 加载预训练的模型:

detection_graph = model.DetectionModel(PATH_TO_MODEL)

其中,PATH_TO_MODEL是指预训练模型的路径。

3. 加载标签映射文件:

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

其中,PATH_TO_LABELS是指标签映射文件的路径,NUM_CLASSES是指检测的类别数量。

4. 定义输入和输出张量:

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

5. 加载待检测的图像:

image = cv2.imread(PATH_TO_IMAGE)

其中,PATH_TO_IMAGE是指待检测的图像路径。

6. 进行目标检测:

output_dict = detection_graph.run_inference_for_single_image(image, image_tensor, detection_boxes, detection_scores, detection_classes, num_detections)

7. 可视化检测结果:

vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    np.squeeze(output_dict['detection_boxes']),
    np.squeeze(output_dict['detection_classes']).astype(np.int32),
    np.squeeze(output_dict['detection_scores']),
    category_index,
    use_normalized_coordinates=True,
    line_thickness=2,
    min_score_thresh=MIN_SCORE_THRESHOLD)

其中,MIN_SCORE_THRESHOLD是指设定的最小置信度阈值,低于该阈值的检测结果将被忽略。

使用示例:

import cv2
import numpy as np
from object_detection.core import model
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import label_map_util

PATH_TO_MODEL = 'path/to/pretrained/model'
PATH_TO_LABELS = 'path/to/label_map.pbtxt'
NUM_CLASSES = 90
PATH_TO_IMAGE = 'path/to/image.jpg'
MIN_SCORE_THRESHOLD = 0.5

detection_graph = model.DetectionModel(PATH_TO_MODEL)

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

image = cv2.imread(PATH_TO_IMAGE)

output_dict = detection_graph.run_inference_for_single_image(image, image_tensor, detection_boxes, detection_scores, detection_classes, num_detections)

vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    np.squeeze(output_dict['detection_boxes']),
    np.squeeze(output_dict['detection_classes']).astype(np.int32),
    np.squeeze(output_dict['detection_scores']),
    category_index,
    use_normalized_coordinates=True,
    line_thickness=2,
    min_score_thresh=MIN_SCORE_THRESHOLD)

cv2.imshow('Object Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上代码示例使用了OpenCV读取图像,并实现了在图像上绘制检测结果并显示图像的功能。同时,通过加载预训练模型和标签映射文件,使用模型进行目标检测,将目标框和类别标签绘制在图像上。