基于CIFAR-10数据集的CIFARNet模型的Python实现
发布时间:2024-01-06 16:00:27
CIFAR-10是一个包含60000张32×32彩色图像的数据集,其中包含10个不同类别的图像。CIFARNet是一个基于深度卷积神经网络的模型,特别设计用于对CIFAR-10数据集进行分类。下面是CIFARNet模型的Python实现,并附带一个使用例子。
CIFARNet模型主要由多个卷积层、池化层和全连接层组成。具体实现代码如下:
import torch
import torch.nn as nn
class CIFARNet(nn.Module):
def __init__(self):
super(CIFARNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = self.pool(torch.relu(self.conv3(x)))
x = self.pool(torch.relu(self.conv4(x)))
x = x.view(-1, 128 * 8 * 8)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
上述代码定义了一个CIFARNet类,该类继承了nn.Module类,并在构造函数中初始化了卷积层、池化层和全连接层。forward()函数定义了模型的前向传播过程。
下面是一个使用例子,使用CIFARNet模型对CIFAR-10数据集进行分类:
import torch
import torchvision
import torchvision.transforms as transforms
# 加载CIFAR-10数据集并进行预处理
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 实例化CIFARNet模型
net = CIFARNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
上述代码首先进行了数据集的加载和预处理,然后实例化了CIFARNet模型。接着定义了损失函数和优化器,并使用训练集数据对模型进行训练。最后,在测试集上对模型进行测试,并输出准确率结果。
通过以上代码,我们可以实现一个基于CIFAR-10数据集的CIFARNet模型的Python实现,并对图像进行分类。
