CIFARNet模型在Python中的图像识别应用
发布时间:2024-01-06 15:54:39
CIFARNet是一个用于图像分类的深度学习模型,特别适用于CIFAR-10数据集。CIFAR-10数据集包含60000张32x32像素的彩色图片,共分为10个类别,每个类别有6000张图片。
以下是一个在Python中使用CIFARNet模型进行图像识别的示例:
首先,我们需要安装必要的库。在命令行中输入以下命令进行安装:
pip install torch numpy matplotlib torchvision
接下来,我们将从PyTorch库中导入所需的模块和函数:
import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim import torch import matplotlib.pyplot as plt
定义一个函数load_cifar10来加载CIFAR-10数据集:
def load_cifar10():
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return trainloader, testloader, classes
接下来,我们需要定义CIFARNet模型。CIFARNet网络结构类似于经典的LeNet-5模型,但做了一些修改以适应CIFAR-10数据集:
class CIFARNet(nn.Module):
def __init__(self):
super(CIFARNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
接下来,我们需要定义模型的训练过程:
def train_net(net, trainloader):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
定义一个函数来测试训练好的模型的准确度:
def test_net(net, testloader):
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (
100 * correct / total))
现在我们可以定义主函数main,并调用上述定义的函数进行训练和测试:
def main():
trainloader, testloader, classes = load_cifar10()
net = CIFARNet()
train_net(net, trainloader)
test_net(net, testloader)
if __name__ == "__main__":
main()
最后,我们可以运行这个Python脚本,并观察输出的准确度和训练损失:
[1, 2000] loss: 2.234 [1, 4000] loss: 1.865 [1, 6000] loss: 1.663 [1, 8000] loss: 1.578 [1, 10000] loss: 1.531 [1, 12000] loss: 1.516 [2, 2000] loss: 1.445 [2, 4000] loss: 1.439 [2, 6000] loss: 1.440 [2, 8000] loss: 1.408 [2, 10000] loss: 1.387 [2, 12000] loss: 1.383 Finished Training Accuracy of the network on the 10000 test images: 50.73 %
通过上述示例,我们可以使用CIFARNet模型对CIFAR-10数据集中的图像进行分类。可以根据需要对模型进行进一步的调整和改进,以提高准确度。
