CIFARNet在Python环境下的图像分类算法
发布时间:2024-01-06 15:59:33
CIFARNet是一种由加拿大计算机科学与工程研究所(CIFAR)开发的卷积神经网络模型,用于图像分类任务。它是为了解决CIFAR-10和CIFAR-100数据集中的图像分类问题而设计的。CIFAR-10数据集包含10个不同类别的60000张32x32彩色图片,每个类别包含6000张图片。CIFAR-100数据集包含100个不同类别的60000张图片,每个类别包含600张图片。
下面是CIFARNet的使用例子:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义CIFARNet网络模型
class CIFARNet(nn.Module):
def __init__(self):
super(CIFARNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.relu2 = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 16 * 16, 512)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.relu1(self.conv1(x))
x = self.pool(self.relu2(self.conv2(x)))
x = x.view(-1, 64 * 16 * 16)
x = self.relu3(self.fc1(x))
x = self.fc2(x)
return x
# 准备CIFAR-10数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 初始化网络模型和优化器
net = CIFARNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished training')
# 在测试集上评估模型准确率
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (100 * correct / total))
# 计算各个类别的准确率
class_correct = list(0. for _ in range(10))
class_total = list(0. for _ in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %.2f %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
上述代码首先定义了CIFARNet网络模型,该模型包含两个卷积层,一个池化层和两个全连接层。然后,使用torchvision库加载CIFAR-10数据集,并对数据进行预处理。接下来,初始化网络模型、损失函数和优化器。然后,使用训练集对模型进行训练,并在每个epoch结束时打印损失值。最后,在测试集上评估模型的准确率,并计算各个类别的准确率。
CIFARNet是一个简单而有效的图像分类算法。你可以根据需要进行修改和扩展,例如增加更多的卷积层或全连接层,或者使用不同的优化器和损失函数。希望这个例子能够帮助你开始使用CIFARNet进行图像分类任务。
