Python中使用object_detection.utils.learning_schedulesmanual_stepping()函数手动调整学习率的方法
object_detection.utils.learning_schedules.manual_stepping()函数是TensorFlow Object Detection API提供的一个用于手动调整学习率的函数。该函数可以在训练过程中根据步数来调整学习率,可以根据自己的需求来设置学习率的变化策略。
该函数的定义如下:
def manual_stepping(global_step, boundaries, rates, warmup=False):
"""Manually stepped learning rate schedule.
This function provides fine grained control over learning rates. One must
specify a sequence of learning rates as well as a set of integer steps
at which the current learning rate must transition to the next. For
example, if boundaries = [5, 10] and rates = [.1, .01, .001], then the
learning rate returned by this function is .1 for global_step=0,...,4,
.01 for global_step=5...9, and .001 for global_step=10 and onward.
Args:
global_step: int64 (scalar) tensor representing global step.
boundaries: a list of global steps at which to switch learning
rates. A value less than or equal to global_step will trigger
the corresponding learning rate.
rates: a list of learning rates corresponding to intervals between
the boundaries. The length of this list must be exactly
len(boundaries) + 1.
warmup: whether to linearly interpolate learning rate for steps in
[0, boundaries[0]].
Returns:
a scalar float tensor representing learning rate
Raises:
ValueError: if one of the following checks fails:
1. boundaries is a strictly increasing list.
2. len(rates) == len(boundaries) + 1
3. rates[x] <= rates[x+1], for all x in [0, len(rates) - 2]
"""
if any([b < 0 for b in boundaries]) or any(
[a >= b for a, b in zip(boundaries[:-1], boundaries[1:])]):
raise ValueError('boundaries must be a increasing list of positive integers')
if any([a >= b for a, b in zip(rates[:-1], rates[1:])]):
raise ValueError('Learning rates must be in non-decreasing order')
if len(rates) != len(boundaries) + 1:
raise ValueError('Number of provided learning rates must exceed '
'number of boundary points by exactly 1.')
使用方法:
1. 首先需要准备一个表示全局步数的int64的标量张量global_step。
2. 然后需要指定一个列表boundaries,这个列表中包含了学习率变化的步数点,必须是递增的正整数。例如,如果指定boundaries = [5, 10],表示在第5步和第10步时学习率会发生变化。
3. 接着需要指定一个列表rates,这个列表中包含了学习率在不同阶段的取值。列表的长度必须为len(boundaries) + 1。例如,如果指定rates = [.1, .01, .001],表示在第1阶段学习率为0.1,在第2阶段学习率为0.01,在第3阶段及以后学习率为0.001。
4. 最后,可以选择是否开启预热(warmup)设置,如果开启预热设置,则在[0, boundaries[0]]的步数范围内,学习率会进行线性插值。
下面是一个示例代码,演示了如何使用object_detection.utils.learning_schedules.manual_stepping()函数来手动调整学习率:
import tensorflow as tf from object_detection.utils import learning_schedules global_step = tf.Variable(0, trainable=False) boundaries = [4, 8, 12] rates = [0.1, 0.01, 0.001, 0.0001] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=global_step)
在上述代码中,我们创建了一个表示全局步数的global_step标量张量,并将其设置为不可训练。然后,我们定义了学习率的变化策略:在第4、8和12步时学习率会发生变化,分别是从0.1到0.01,从0.01到0.001,从0.001到0.0001。最后,我们使用定义好的学习率来创建一个优化器,并使用这个优化器来最小化损失函数。
这样,在训练过程中,每当全局步数达到了指定的边界值时,学习率会自动变化,从而实现了手动调整学习率的功能。
