欢迎访问宙启技术站
智能推送

object_detection.utils.learning_schedulesmanual_stepping()在Python中的手动学习率调整方法

发布时间:2023-12-24 13:17:34

在目标检测中,学习率调整是训练过程中很重要的一步,可以帮助我们更好地优化模型。object_detection.utils.learning_schedules中的manual_stepping()函数提供了一种手动调整学习率的方法。

manual_stepping()函数的定义如下:

def manual_stepping(global_step, boundaries, learning_rates, warmup=False):
    """Manually stepped learning rate schedule.
  
    This function provides fine grained control over learning rates.  One must
    specify a sequence of learning rates as well as a set of integer steps
    at which the current learning rate must transition to the next.  For
    example, if boundaries = [5, 10] and learning_rates = [.1, .01, .001],
    then the learning rate returned by this function is .1 for global_step=0,
    .1 for global_step=1, ..., .1 for global_step=4, .01 for global_step=5,
    etc.  The learning_rate returned by this function can be passed to a
    tf.train.Optimizer when training.

    Args:
    global_step: int64 (scalar) tensor representing global step.
    boundaries: a list of global steps at which to switch learning
      rates.  This list is assumed to consist of increasing positive integers.
    learning_rates: a list of learning rates corresponding to intervals between
      the boundaries.  The length of this list must be exactly
      len(boundaries) + 1.
    warmup: whether to linearly interpolate learning rate for steps in
      [0, boundaries[0]].

    Returns:
    modified_learning_rate: A scalar float tensor representing learning_rate.
    """

下面通过一个实例来说明如何使用manual_stepping()函数手动调整学习率。

import tensorflow as tf
from object_detection.utils.learning_schedules import manual_stepping

# 定义训练参数
num_epochs = 100
global_step = tf.train.get_or_create_global_step()  # 全局步数
boundaries = [50, 80]  # 学习率转换的步数
learning_rates = [0.01, 0.001, 0.0001]  # 不同区间的学习率
learning_rate = manual_stepping(global_step, boundaries, learning_rates)

# 定义优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)

# 在训练循环中使用学习率
sess = tf.Session()
sess.run(tf.global_variables_initializer())

for epoch in range(num_epochs):
    # 训练模型

    # 更新学习率
    sess.run(train_op, feed_dict={...})

在上述示例中,我们首先定义了训练参数,包括训练的总轮数num_epochs、全局步数global_step、学习率切换的步数boundaries和对应的学习率learning_rates。接下来,我们使用manual_stepping()函数根据当前的全局步数来获取相应的学习率。然后,我们使用该学习率初始化优化器,并使用优化器的minimize()函数定义训练操作train_op。最后,我们在训练循环中使用sess.run()来更新模型的学习率。

手动学习率调整方法可以很好地应用于目标检测中,通过调整学习率可以帮助我们获得更好的训练效果,并提高模型的性能。