欢迎访问宙启技术站
智能推送

object_detection.utils.learning_schedulesmanual_stepping()在Python中手动学习率调整的实现方法

发布时间:2023-12-24 13:19:20

在目标检测中,学习率调整是一种常用的优化方法,它可以帮助我们更好地优化模型,提高模型的性能。object_detection.utils.learning_schedules.manual_stepping()是目标检测中手动学习率调整的函数,该函数可以帮助我们实现手动设置学习率调度表。下面我们将介绍如何在Python中使用该函数进行手动学习率调整,并提供一个示例。

object_detection.utils.learning_schedules.manual_stepping()函数的定义如下:

def manual_stepping(global_step, boundaries, rates, warmup=False):
    """
    Manually stepped learning rate schedule.
    This function provides fine grained control over learning rates.  One must
    specify a sequence of learning rates as well as a set of integer
    boundaries at which the learning rates are changed.  This is often used
    for training non-linear learning rate schedules.  For example, to train
    with learning rate 0.5 for the first 100000 steps, 0.1 for the next
    30000 steps and 0.01 for any additional steps, one would specify
    boundaries = [100000, 130000] and rates = [0.5, 0.1, 0.01].
    Args:
        global_step: int64 (scalar) tensor representing global step.
        boundaries: a list of global steps at which to switch learning
            rates.  This list is assumed to consist of increasing positive
            integers.
        rates: list of (float) learning rates to be used with each
            boundary.  The length of this list must be exactly
            len(boundaries) + 1.
        warmup: whether to linearly interpolate learning rate for steps in
            [0, boundaries[0]].
    Returns:
        effective learning rate: scalar float tensor representing learning
        rate
    Raises:
        ValueError: if one of the following checks fails:
            - boundaries is a strictly increasing list of positive integers
            - len(rates) == len(boundaries) + 1
    """

现在我们使用一个示例来展示如何在Python中使用该函数进行手动学习率调整。假设我们要训练一个目标检测模型,设置学习率为0.1的一阶段学习率训练10个epochs,然后将学习率降为0.01的二阶段学习率训练5个epochs。

import tensorflow as tf
from object_detection.utils.learning_schedules import manual_stepping

global_step = tf.Variable(0, trainable=False)
boundaries = [10, 15]  # 切换学习率的全局步数边界
rates = [0.1, 0.01, 0.001]  # 学习率列表
learning_rate = manual_stepping(global_step, boundaries, rates)

# 创建优化器
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

# 计算梯度并更新参数
train_op = optimizer.minimize(loss, global_step=global_step)

在上面的示例中,我们首先定义了一个全局步数global_step,并将其设置为不可训练的变量。然后,我们定义了学习率调整的边界boundaries,即在哪些全局步数切换学习率。接下来,我们定义了学习率列表rates,其中包含在每个边界上使用的学习率。最后,我们使用object_detection.utils.learning_schedules.manual_stepping()函数将global_stepboundariesrates作为参数,计算得到学习率learning_rate

接下来,我们使用创建的学习率learning_rate初始化优化器,并通过优化器来计算梯度并更新模型参数。在这个过程中,全局步数会自动增加,并且学习率会根据边界和学习率列表的定义进行调整。

希望上面的示例能够帮助你理解并使用object_detection.utils.learning_schedules.manual_stepping()函数来实现手动学习率调整。这个函数在目标检测中是非常有用的,可以帮助我们根据训练需要更细致地控制学习率。