使用object_detection.utils.metricsclasses()方法统计目标检测模型每个类别的召回率
发布时间:2024-01-14 22:44:38
object_detection.utils.metrics包含了几种用于评估目标检测模型的性能的类。其中,metricsclasses()方法可以用来计算模型在每个类别上的召回率。下面是一个使用例子,用于统计目标检测模型每个类别的召回率。
import tensorflow as tf
from object_detection.utils import metrics
# 定义类别标签
num_classes = 3
label_id_offset = 1
categories = [{'id': i + label_id_offset, 'name': 'category{}'.format(i + 1)} for i in range(num_classes)]
# 定义模型预测结果
detected_boxes = {
'image1.jpg': [
{'bbox': [50, 50, 100, 100], 'score': 0.8, 'category_id': 2},
{'bbox': [150, 150, 200, 200], 'score': 0.9, 'category_id': 1},
{'bbox': [200, 200, 250, 250], 'score': 0.7, 'category_id': 3},
],
'image2.jpg': [
{'bbox': [100, 100, 150, 150], 'score': 0.85, 'category_id': 1},
{'bbox': [200, 200, 250, 250], 'score': 0.75, 'category_id': 2},
{'bbox': [300, 300, 350, 350], 'score': 0.95, 'category_id': 1},
],
}
# 定义模型真实标签
groundtruth_boxes = {
'image1.jpg': [
{'bbox': [50, 50, 100, 100], 'category_id': 2},
{'bbox': [150, 150, 200, 200], 'category_id': 1},
],
'image2.jpg': [
{'bbox': [100, 100, 150, 150], 'category_id': 1},
{'bbox': [200, 200, 250, 250], 'category_id': 2},
],
}
# 初始化评估器
evaluator = metrics.PascalDetectionEvaluator(categories)
# 循环遍历图片,并记录预测结果和真实标签
for image_id in detected_boxes.keys():
detection_boxes = []
detection_scores = []
detection_classes = []
groundtruth_boxes_list = []
groundtruth_classes = []
for detection in detected_boxes[image_id]:
detection_boxes.append((detection['bbox'][1], detection['bbox'][0], detection['bbox'][3], detection['bbox'][2]))
detection_scores.append(detection['score'])
detection_classes.append(detection['category_id'])
for groundtruth in groundtruth_boxes[image_id]:
groundtruth_boxes_list.append((groundtruth['bbox'][1], groundtruth['bbox'][0], groundtruth['bbox'][3], groundtruth['bbox'][2]))
groundtruth_classes.append(groundtruth['category_id'])
# 更新评估器的预测结果和真实标签
evaluator.add_single_groundtruth_image_info(image_id, groundtruth_boxes_list, groundtruth_classes)
evaluator.add_single_detected_image_info(image_id, detection_boxes, detection_scores, detection_classes)
# 计算并打印每个类别的召回率
metrics = evaluator.evaluate()
for i, category in enumerate(categories):
print('Category: {}'.format(category['name']))
print('Recall: {}'.format(metrics['Precision/mAP@.5IOU'][i]))
print('=====================================')
上述例子中,首先定义了目标检测模型的类别标签信息,以及模型的预测结果和真实标签信息。然后,初始化了一个评估器PascalDetectionEvaluator,并循环遍历每张图片,提取预测结果和真实标签,并将其添加到评估器中。最后,调用evaluate()方法计算评估结果,并打印每个类别的召回率。
这个方法可以帮助我们评估模型在每个类别上的性能,了解哪些类别的检测效果更好。对于目标检测任务的性能评估非常有用。
