如何使用roi_data_layer.minibatchget_minibatch()函数实现批量生成ROI数据
发布时间:2024-01-14 19:29:33
要使用roi_data_layer.minibatch.get_minibatch()函数实现批量生成ROI数据,需要按照以下步骤进行操作:
1. 导入相关的库和模块:
import numpy as np from fast_rcnn.config import cfg from roi_data_layer.layer import get_minibatch
2. 配置相关的参数:
cfg.TRAIN.BATCH_SIZE = 128 # 指定批量大小 cfg.TRAIN.RPN_BATCH_SIZE = cfg.TRAIN.BATCH_SIZE # 指定RPN批量大小 cfg.TRAIN.FG_FRACTION = 0.25 # 前景样本比例 cfg.TRAIN.BG_THRESH_HI = 0.5 # 背景阈值上限 cfg.TRAIN.BG_THRESH_LO = 0.1 # 背景阈值下限 cfg.TRAIN.RAND_SCALE = False # 是否随机缩放 cfg.TRAIN.SCALES = (600,) # 输入图像尺寸 cfg.TRAIN.MAX_SIZE = 1000 # 输入图像最大尺寸
3. 定义相关的数据处理函数:
def prepare_roidb(imdb):
roidb = imdb.roidb
for i in range(len(imdb.image_index)):
roidb[i]['image'] = imdb.image_path_at(i)
roidb[i]['width'] = imdb._image_widths[i]
roidb[i]['height'] = imdb._image_heights[i]
roidb[i]['boxes'] = imdb._gt_boxes[i]
roidb[i]['gt_classes'] = imdb._gt_classes[i]
roidb[i]['gt_overlaps'] = imdb._gt_overlaps[i]
roidb[i]['flipped'] = False
roidb[i]['seg_areas'] = imdb._gt_seg_areas[i]
return roidb
4. 准备ROI数据库和图像均值:
imdb = get_imdb(imdb_name)
imdb.competition_mode(on=True)
roidb = prepare_roidb(imdb)
input_data = imdb.gt_roidb()
data_layer = DataLayer(roidb, imdb.num_classes)
data_layer.start()
mean_file = cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED
if os.path.exists(mean_file):
print('Use a fixed mean image.')
mean = os.path.join(cfg.ROOT_DIR, mean_file)
else:
mean = np.ones((3, 1, 1)) * cfg.PIXEL_MEANS
5. 批量生成ROI数据:
blobs, im_info = get_minibatch(roidb, mean, cfg.TRAIN.BATCH_SIZE)
im_data = blobs['data']
im_rois = blobs['rois']
data = {'data': im_data, 'rois': im_rois, 'im_info': im_info}
在使用roi_data_layer.minibatch.get_minibatch()函数时需要注意的是:
- roidb参数是一个包含所有ROI数据的列表。
- mean参数是一个包含三个通道值的矩阵,可以是固定的均值图像,也可以是预设的均值。
- cfg.TRAIN.BATCH_SIZE参数指定了批量大小,即一次生成的ROI数据数量。
下面是一个完整的例子:
import numpy as np
from fast_rcnn.config import cfg
from roi_data_layer.layer import get_minibatch
from imdb import get_imdb
from core.data_layer import DataLayer
import os
# 配置参数
cfg.TRAIN.BATCH_SIZE = 128
cfg.TRAIN.RPN_BATCH_SIZE = cfg.TRAIN.BATCH_SIZE
cfg.TRAIN.FG_FRACTION = 0.25
cfg.TRAIN.BG_THRESH_HI = 0.5
cfg.TRAIN.BG_THRESH_LO = 0.1
cfg.TRAIN.RAND_SCALE = False
cfg.TRAIN.SCALES = (600,)
cfg.TRAIN.MAX_SIZE = 1000
# 数据处理函数
def prepare_roidb(imdb):
roidb = imdb.roidb
for i in range(len(imdb.image_index)):
roidb[i]['image'] = imdb.image_path_at(i)
roidb[i]['width'] = imdb._image_widths[i]
roidb[i]['height'] = imdb._image_heights[i]
roidb[i]['boxes'] = imdb._gt_boxes[i]
roidb[i]['gt_classes'] = imdb._gt_classes[i]
roidb[i]['gt_overlaps'] = imdb._gt_overlaps[i]
roidb[i]['flipped'] = False
roidb[i]['seg_areas'] = imdb._gt_seg_areas[i]
return roidb
# 准备数据
imdb = get_imdb(imdb_name)
imdb.competition_mode(on=True)
roidb = prepare_roidb(imdb)
input_data = imdb.gt_roidb()
data_layer = DataLayer(roidb, imdb.num_classes)
data_layer.start()
mean_file = cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED
if os.path.exists(mean_file):
print('Use a fixed mean image.')
mean = os.path.join(cfg.ROOT_DIR, mean_file)
else:
mean = np.ones((3, 1, 1)) * cfg.PIXEL_MEANS
# 批量生成ROI数据
blobs, im_info = get_minibatch(roidb, mean, cfg.TRAIN.BATCH_SIZE)
im_data = blobs['data']
im_rois = blobs['rois']
data = {'data': im_data, 'rois': im_rois, 'im_info': im_info}
以上是使用roi_data_layer.minibatch.get_minibatch()函数实现批量生成ROI数据的完整步骤和示例代码。
