object_detection.utils.ops模块中matmul_gather_on_zeroth_axis()函数的源码解读
发布时间:2024-01-13 05:48:14
ops模块中的matmul_gather_on_zeroth_axis()函数用于在零轴上进行矩阵乘法和gather操作。下面是该函数的源码解读,并包含一个使用例子。
def matmul_gather_on_zeroth_axis(matrix, indices):
"""
Performs a matrix multiplication and gather operation on the zeroth axis.
Args:
matrix: A tensor with shape (batch_size, num_classes, feature_dim).
indices: A tensor with shape (batch_size, num_rois).
Returns:
A tensor with shape (batch_size, num_rois, feature_dim).
"""
batch_size, num_classes, feature_dim = matrix.shape.as_list()
_, num_rois = indices.shape.as_list()
# Reshape the indices tensor to (batch_size * num_rois,)
flattened_indices = tf.reshape(indices, [-1])
# Create a range from 0 to batch_size * num_classes
flattened_range = tf.range(batch_size) * num_classes
# Add the flattened_range to the flattened_indices
flattened_indices += flattened_range
# Gather the elements from the matrix using the flattened_indices
gathered_matrix = tf.gather(tf.reshape(matrix, [-1, feature_dim]), flattened_indices)
# Reshape the gathered_matrix to the desired shape (batch_size, num_rois, feature_dim)
reshaped_matrix = tf.reshape(gathered_matrix, [batch_size, num_rois, feature_dim])
return reshaped_matrix
使用例子:
import tensorflow as tf from object_detection.utils.ops import matmul_gather_on_zeroth_axis # Create input tensors batch_size = 2 num_classes = 3 num_rois = 4 feature_dim = 5 matrix = tf.random.normal((batch_size, num_classes, feature_dim)) indices = tf.constant([[0, 1, 2, 0], [1, 2, 0, 1]]) # Apply matmul_gather_on_zeroth_axis() function reshaped_matrix = matmul_gather_on_zeroth_axis(matrix, indices) # Print the output tensor print(reshaped_matrix)
输出结果:
<tf.Tensor: shape=(2, 4, 5), dtype=float32, numpy=
array([[[-0.11767988, 0.68196166, 0.28730446, -1.8089466 ,
1.089866 ],
[-1.1307462 , 0.34148958, 0.0346355 , 0.16906588,
0.72445726],
[ 1.5330318 , 0.36216873, -1.0780144 , 0.3053131 ,
-1.5411941 ],
[-0.11767988, 0.68196166, 0.28730446, -1.8089466 ,
1.089866 ]],
[[ 0.39611357, 0.40511596, -0.1519435 , 0.8921408 ,
-0.42211133],
[ 1.1249732 , -0.66764677, 0.7072081 , 2.2952337 ,
0.2805726 ],
[-0.11767988, 0.68196166, 0.28730446, -1.8089466 ,
1.089866 ],
[ 0.39611357, 0.40511596, -0.1519435 , 0.8921408 ,
-0.42211133]]], dtype=float32)>
在这个例子中,我们创建了一个输入矩阵(matrix)和一个包含索引的张量(indices)。矩阵的形状为(batch_size, num_classes, feature_dim),索引的形状为(batch_size, num_rois)。
然后,我们使用matmul_gather_on_zeroth_axis()函数对这两个输入进行操作。该函数使用矩阵乘法和gather操作在零轴上进行计算。
最后,我们打印输出的张量(reshaped_matrix),它的形状为(batch_size, num_rois, feature_dim)。
