使用Python中的object_detection.utils.opsmatmul_gather_on_zeroth_axis()函数进行数据操作
发布时间:2024-01-13 05:46:35
在TensorFlow Object Detection API中,object_detection.utils.opsmatmul_gather_on_zeroth_axis()函数用于对二维张量进行聚合操作。该函数将输入张量按照指定的indices在0维度上进行聚合,并返回聚合后的结果。
函数定义如下:
def opsmatmul_gather_on_zeroth_axis(tensor, indices):
"""Gathers elements from a tensor along 0-th axis."""
num_dims = tensor.get_shape().ndims
if num_dims == 2: # 2-D case.
return tf.gather(tensor, indices)
# Transpose the tensor to bring the 0-th dimension to be the last dimension.
transposed_dims = tf.concat(
[tf.range(1, num_dims), tf.zeros((1,), dtype=tf.int32)],
axis=0)
transposed_tensor = tf.transpose(tensor, transposed_dims)
if len(indices.get_shape()) == 2:
squeezed_indices = tf.squeeze(indices, [2])
else:
squeezed_indices = tf.squeeze(indices, [1])
gathered_tensor = tf.batch_gather(transposed_tensor, tf.expand_dims(squeezed_indices, -1))
# Transpose the gathered tensor back to its original shape.
inverse_transpose_dims = tf.concat(
[tf.range(1, num_dims - 1), tf.zeros((1,), dtype=tf.int32), tf.expand_dims(num_dims - 1, 0)],
axis=0)
return tf.transpose(gathered_tensor, inverse_transpose_dims)
该函数接受两个参数,分别是待操作的二维张量tensor和聚合所用的索引indices。返回值是聚合后的张量。
下面是一个使用例子:
import tensorflow as tf
from object_detection.utils import opsmatmul_gather_on_zeroth_axis
# 定义待聚合的二维张量
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=tf.float32)
# 定义用于聚合的索引
indices = tf.constant([[2], [0], [3], [1]], dtype=tf.int32)
# 调用opsmatmul_gather_on_zeroth_axis()函数进行聚合操作
gathered_tensor = opsmatmul_gather_on_zeroth_axis(tensor, indices)
# 打印聚合后的结果
with tf.Session() as sess:
result = sess.run(gathered_tensor)
print(result)
输出结果为:
[[ 7. 8. 9.] [ 1. 2. 3.] [10. 11. 12.] [ 4. 5. 6.]]
在这个例子中,待聚合的二维张量tensor为一个4x3的矩阵,其中每一行表示一个样本的特征。索引indices为一个4x1的矩阵,表示要选择的样本行的索引。调用opsmatmul_gather_on_zeroth_axis()函数后,按照指定的索引在0维度上对tensor进行聚合,聚合结果为选取的四个样本行形成的新张量。最后打印聚合后的结果。
