欢迎访问宙启技术站
智能推送

在Python中利用LeakyRectify函数实现生成对抗网络(GAN)

发布时间:2024-01-07 13:46:00

生成对抗网络(GAN)是一种用于生成新样本的深度学习模型,它由生成器和判别器两个部分组成。生成器试图生成与真实样本相似的新样本,而判别器则尝试区分真实样本和生成器生成的样本。通过对抗性训练,生成器和判别器不断优化,从而达到更好的生成样本效果。

Leaky ReLU(泄露修正线性单元)是一种修正线性单元的变体,它在负输入上保持一定的梯度,可以避免修正线性单元中的“神经元死亡”问题。在Leaky ReLU中,负输入上的梯度不为零。Leaky ReLU的函数定义如下:

f(x) = max(ax, x)

其中,a是一个小于1的正数,表示在负输入上保持的梯度。

在Python中,我们可以使用TensorFlow或PyTorch等深度学习框架来实现生成对抗网络(GAN)并利用Leaky ReLU函数。

下面是一个使用PyTorch实现的简单的生成对抗网络(GAN)示例,其中使用了Leaky ReLU函数:

import torch
import torch.nn as nn

# 定义生成器网络
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.layers = nn.Sequential(
            nn.Linear(100, 128),
            nn.LeakyReLU(0.2),
            nn.Linear(128, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 784),
            nn.Tanh()
        )
    
    def forward(self, x):
        x = self.layers(x)
        return x

# 定义判别器网络
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 128),
            nn.LeakyReLU(0.2),
            nn.Linear(128, 1),
            nn.Sigmoid()
        )
    
    def forward(self, x):
        x = self.layers(x)
        return x

# 定义训练过程
def train_gan(generator, discriminator, num_epochs=100, batch_size=64, learning_rate=0.0002):
    # 定义损失函数和优化器
    criterion = nn.BCELoss()
    optimizer_g = torch.optim.Adam(generator.parameters(), lr=learning_rate)
    optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=learning_rate)
    
    # 训练生成器和判别器
    for epoch in range(num_epochs):
        for i, (real_images, _) in enumerate(data_loader):
            real_images = real_images.view(-1, 784)
            batch_size = real_images.size(0)
            
            # 训练判别器
            real_labels = torch.ones(batch_size, 1)
            fake_labels = torch.zeros(batch_size, 1)
            
            outputs = discriminator(real_images)
            d_loss_real = criterion(outputs, real_labels)
            real_score = outputs
            
            z = torch.randn(batch_size, 100)
            fake_images = generator(z)
            outputs = discriminator(fake_images.detach())
            d_loss_fake = criterion(outputs, fake_labels)
            fake_score = outputs
            
            d_loss = d_loss_real + d_loss_fake
            discriminator.zero_grad()
            d_loss.backward()
            optimizer_d.step()
            
            # 训练生成器
            z = torch.randn(batch_size, 100)
            fake_images = generator(z)
            outputs = discriminator(fake_images)
            g_loss = criterion(outputs, real_labels)
            
            generator.zero_grad()
            g_loss.backward()
            optimizer_g.step()
            
            # 打印训练信息
            if (i+1) % 100 == 0:
                print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}'
                      .format(epoch+1, num_epochs, i+1, len(data_loader), d_loss.item(), g_loss.item(),
                              real_score.mean().item(), fake_score.mean().item()))

# 加载数据集
data_loader = torch.utils.data.DataLoader(dataset=mnist_dataset,
                                          batch_size=batch_size,
                                          shuffle=True)

# 定义生成器和判别器实例
generator = Generator()
discriminator = Discriminator()

# 训练生成对抗网络(GAN)
train_gan(generator, discriminator)

以上是一个简单的使用Leaky ReLU函数实现生成对抗网络(GAN)的例子。在训练过程中,生成器和判别器网络通过对抗性训练不断优化,从而实现更好的样本生成效果。