Python中基于object_detection.models.ssd_inception_v2_feature_extractor的目标检测评估方法
发布时间:2024-01-07 06:05:26
在Python中,使用TensorFlow的目标检测API进行模型训练和评估非常方便。其中的object_detection.models.ssd_inception_v2_feature_extractor是一个常用的目标检测模型。
首先,我们需要先在Python环境中安装TensorFlow和目标检测API。可以使用以下命令进行安装:
pip install tensorflow tensorflow-object-detection-api
接下来,我们将给出一个基于object_detection.models.ssd_inception_v2_feature_extractor的目标检测评估代码示例。
import tensorflow as tf
from object_detection.models import ssd_inception_v2_feature_extractor
from object_detection.utils import config_util, label_map_util
from object_detection.utils import object_detection_evaluation
def main():
# 设置模型配置文件路径
pipeline_config_path = 'path_to_pipeline.config'
# 加载模型配置
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
# 加载模型的检测器
model = ssd_inception_v2_feature_extractor.SSDInceptionV2FeatureExtractor(
is_training=False,
freeze_batchnorm=False,
inplace_batchnorm_update=False,
)
# 加载标签映射文件
label_map_path = 'path_to_label_map.pbtxt'
label_map = label_map_util.load_labelmap(label_map_path)
categories = label_map_util.convert_label_map_to_categories(
label_map,
max_num_classes=configs['model'].ssd.num_classes,
use_display_name=True
)
category_index = label_map_util.create_category_index(categories)
# 加载模型检测结果
detection_boxes = tf.placeholder(tf.float32, [None, None, 4], name='detection_boxes')
detection_scores = tf.placeholder(tf.float32, [None, None], name='detection_scores')
detection_classes = tf.placeholder(tf.float32, [None, None], name='detection_classes')
num_detections = tf.placeholder(tf.float32, [], name='num_detections')
groundtruth_boxes = tf.placeholder(tf.float32, [None, 4], name='groundtruth_boxes')
groundtruth_scores = tf.placeholder(tf.float32, [None], name='groundtruth_scores')
groundtruth_classes = tf.placeholder(tf.float32, [None], name='groundtruth_classes')
# 创建评估对象
evaluator = object_detection_evaluation.ObjectDetectionEvaluation(
num_classes=configs['model'].ssd.num_classes
)
# 更新评估结果
update_op = evaluator.update(
detection_boxes,
detection_scores,
detection_classes,
num_detections,
groundtruth_boxes,
groundtruth_scores,
groundtruth_classes
)
# 初始化评估结果
init_op = tf.variables_initializer(tf.local_variables())
with tf.Session() as sess:
sess.run(init_op)
# 假设我们有一批原始图像和目标真值
batch_images = [...] # 批处理图像
batch_labels = [...] # 批处理真值
# 对每个图像进行预测
for image, labels in zip(batch_images, batch_labels):
# 假设我们有一个目标检测模型,它可以返回:
# - detection_boxes: 检测到的边界框
# - detection_scores: 检测得分
# - detection_classes: 检测到的类别
# - num_detections: 检测的数量
detection_boxes_, detection_scores_, detection_classes_, num_detections_ = model.predict(image)
# 更新评估结果
sess.run(update_op, feed_dict={
detection_boxes: detection_boxes_,
detection_scores: detection_scores_,
detection_classes: detection_classes_,
num_detections: num_detections_,
groundtruth_boxes: labels['boxes'],
groundtruth_scores: labels['scores'],
groundtruth_classes: labels['classes']
})
# 获取评估结果
metrics = evaluator.evaluate()
for i in range(1, configs['model'].ssd.num_classes):
class_name = category_index[i]['name']
print(f"Class {class_name}:")
print(f" Precision: {metrics['Precision/mAP@.50IOU/{}'.format(class_name)]}")
print(f" Recall: {metrics['Recall/AR@1.00IOU/{}'.format(class_name)]}")
if __name__ == '__main__':
main()
上述代码的目标检测评估过程如下:
1. 加载模型配置文件。
2. 创建SSDInceptionV2FeatureExtractor模型的实例。
3. 加载标签映射文件。
4. 创建模型预测输出的占位符。
5. 创建ObjectDetectionEvaluation对象。
6. 定义和初始化评估结果的操作。
7. 在会话中预测每个图像的目标检测结果,并更新评估结果。
8. 获取评估结果并打印出每个类别的精确度和召回率。
请将代码中的path_to_pipeline.config替换为实际的模型配置文件路径,以及path_to_label_map.pbtxt替换为实际的标签映射文件路径。
这是一个简单的基于object_detection.models.ssd_inception_v2_feature_extractor的目标检测评估的示例,您可以根据具体需求进行调整和改进。
