欢迎访问宙启技术站
智能推送

使用Python和object_detection.models.ssd_inception_v2_feature_extractor进行人脸检测的实现

发布时间:2024-01-07 06:01:09

要使用Python和object_detection.models.ssd_inception_v2_feature_extractor进行人脸检测,您首先需要安装TensorFlow Object Detection API,并构建一个检测器来加载预训练的模型。

步骤1:安装TensorFlow Object Detection API

首先,您需要按照TensorFlow Object Detection API的官方文档安装和配置API。可以在https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md上找到完整的安装说明。

步骤2:构建检测器

在TensorFlow Object Detection API中,可以利用预训练模型来构建检测器。以下是一个简单的示例代码,用于构建一个人脸检测器。

import os
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

# 定义模型路径和标签路径
MODEL_NAME = 'ssd_inception_v2_coco_2018_01_28'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90

# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

# 加载标签
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# 创建图像张量
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)

# 检测人脸
def detect_faces(image_path):
    image = Image.open(image_path)
    image_np = load_image_into_numpy_array(image)
    image_np_expanded = np.expand_dims(image_np, axis=0)

    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # 输入和输出张量
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
            detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')

            # 进行检测
            (boxes, scores, classes, num) = sess.run(
                [detection_boxes, detection_scores, detection_classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})

            # 可视化结果
            vis_util.visualize_boxes_and_labels_on_image_array(
                image_np,
                np.squeeze(boxes),
                np.squeeze(classes).astype(np.int32),
                np.squeeze(scores),
                category_index,
                use_normalized_coordinates=True,
                line_thickness=8)

    plt.figure(figsize=(12, 8))
    plt.imshow(image_np)
    plt.show()

# 使用示例图片进行测试
image_path = 'test_image.jpg'
detect_faces(image_path)

在上面的代码中,首先我们定义了模型路径和标签路径。然后,我们使用TensorFlow的tf.Graph()创建了一个图,并加载了预训练的SSD模型和标签。接下来,我们定义了一个函数load_image_into_numpy_array,用于将图像加载为numpy数组。最后,我们定义了一个detect_faces函数,该函数接受图像路径作为输入,并使用加载的模型进行人脸检测。检测到人脸后,我们使用vis_util.visualize_boxes_and_labels_on_image_array函数在图像上绘制人脸框。

您可以替换image_path变量以使用您自己的图像进行人脸检测。确保图像的路径正确,并且图像包含人脸。

希望这个例子能帮助您实现人脸检测使用Python和object_detection.models.ssd_inception_v2_feature_extractor!