基于Keras和Mobilenet的图像风格迁移教程
发布时间:2024-01-05 16:58:28
图像风格迁移是将一张图像的风格转移到另一张图像上的技术,它可以将一张正常的图像转换为具有艺术感的图像。在本教程中,我们将使用Keras库和Mobilenet模型来实现图像风格迁移。
首先,确保你已经安装了Keras和相关依赖项。如果没有,请使用以下命令进行安装:
pip install keras tensorflow matplotlib pillow
接下来,我们需要导入必要的库:
from keras.applications import mobilenet from keras.models import Model from keras.layers import Input from keras.preprocessing.image import load_img, img_to_array import numpy as np import matplotlib.pyplot as plt
然后,我们将加载预训练的Mobilenet模型:
base_model = mobilenet.MobileNet(weights='imagenet', include_top=False)
接下来,我们需要加载原始图像和目标图像。原始图像是我们要转换的图像,而目标图像是我们要提取其风格的图像。可以使用load_img函数加载图像,并使用img_to_array函数将其转换为NumPy数组:
content_image = load_img('content.jpg', target_size=(224, 224))
style_image = load_img('style.jpg', target_size=(224, 224))
content_array = img_to_array(content_image)
style_array = img_to_array(style_image)
然后,我们需要准备数据并对其进行预处理。将图像数据缩放到0到1之间,并添加一个额外的维度来匹配预训练模型的输入形状:
content_array /= 255.0 style_array /= 255.0 content_array = np.expand_dims(content_array, axis=0) style_array = np.expand_dims(style_array, axis=0)
现在,我们需要从预训练模型中获取中间层的输出。这些中间层的输出将用作图像风格的表示:
content_layers = ['conv_pw_6_relu', 'conv_pw_10_relu']
style_layers = ['conv_pw_2_relu', 'conv_pw_4_relu', 'conv_pw_6_relu', 'conv_pw_8_relu', 'conv_pw_10_relu']
content_features = []
style_features = []
for layer in content_layers:
intermediate_layer_model = Model(inputs=base_model.input, outputs=base_model.get_layer(layer).output)
content_features.append(intermediate_layer_model.predict(content_array))
for layer in style_layers:
intermediate_layer_model = Model(inputs=base_model.input, outputs=base_model.get_layer(layer).output)
style_features.append(intermediate_layer_model.predict(style_array))
现在,我们可以定义用于计算内容损失和风格损失的函数:
def compute_content_loss(content_features, generated_features):
return tf.reduce_mean(tf.square(content_features - generated_features))
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
def compute_style_loss(style_features, generated_features):
style_loss = 0
for style_feature, generated_feature in zip(style_features, generated_features):
style_gram = gram_matrix(style_feature)
generated_gram = gram_matrix(generated_feature)
style_loss += tf.reduce_mean(tf.square(style_gram - generated_gram))
return style_loss
接下来,我们定义生成图像的函数。我们使用反卷积层生成图像,并根据内容和风格损失进行优化:
def generate_image(generated_image):
generated_image = np.expand_dims(generated_image, axis=0)
generated_image = tf.Variable(generated_image)
optimizer = tf.optimizers.Adam(learning_rate=0.01, beta_1=0.99, epsilon=1e-1)
for i in range(201):
with tf.GradientTape() as tape:
features = base_model(generated_image)
generated_content_features = [features[layer].numpy() for layer in content_layers]
generated_style_features = [features[layer].numpy() for layer in style_layers]
content_loss = compute_content_loss(content_features, generated_content_features)
style_loss = compute_style_loss(style_features, generated_style_features)
total_loss = 0.01 * content_loss + 0.1 * style_loss
gradients = tape.gradient(total_loss, generated_image)
optimizer.apply_gradients([(gradients, generated_image)])
if i % 10 == 0:
generated_image_np = np.squeeze(generated_image.numpy(), axis=0)
generated_image_np = np.clip(generated_image_np, 0, 1)
generated_image_np *= 255.0
plt.imshow(generated_image_np.astype(np.uint8))
plt.show()
最后,我们使用generate_image函数生成图像:
generated_image = np.random.rand(224, 224, 3) generate_image(generated_image)
这就是使用Keras和Mobilenet实现图像风格迁移的教程。你可以通过更改内容和风格图像以及调整超参数来尝试不同的效果。希望这个教程对你有所帮助!
