欢迎访问宙启技术站
智能推送

优化目标检测算法的学习率衰减方法——object_detection.utils.learning_schedulesexponential_decay_with_burnin()

发布时间:2024-01-04 05:16:49

目标检测算法的学习率衰减方法是为了提高算法的收敛速度和效果。学习率衰减方法根据训练的步数或者迭代次数来调整学习率的大小,以使得训练过程中的学习率逐渐变小。这里介绍了一种常用的学习率衰减方法——exponential_decay_with_burnin(),该方法将学习率设置为指数衰减,并在训练初始阶段进行热身。

exponential_decay_with_burnin()定义如下:

def exponential_decay_with_burnin(global_step,
                                  learning_rate_base,
                                  learning_rate_decay_steps,
                                  learning_rate_decay_factor,
                                  burnin_learning_rate=0.0,
                                  burnin_steps=0,
                                  min_learning_rate=0.0,
                                  staircase=True):
    """Exponential decay schedule with burn-in period."""
    if learning_rate_decay_factor <= 0.0:
        raise ValueError('learning_rate_decay_factor must be > 0.0.')
    if burnin_learning_rate < 0.0:
        raise ValueError('burnin_learning_rate must be >= 0.0.')
    if learning_rate_base < burnin_learning_rate:
        raise ValueError('learning_rate_base must be >= burnin_learning_rate.')
    if global_step is None:
        raise ValueError('global_step is required for exponential decay.')
    gar = tf.train.exponential_decay(
        learning_rate_base,
        global_step - burnin_steps,
        learning_rate_decay_steps,
        learning_rate_decay_factor,
        staircase,
        name='exponential_decay_learning_rate')
    if burnin_steps > 0:
        if staircase:
            burnin_gar = tf.train.exponential_decay(
                learning_rate_base,
                global_step,
                burnin_steps,
                learning_rate_decay_factor,
                staircase=True,
                name='burnin_exponential_decay_learning_rate')
        else:
            burnin_gar = (learning_rate_base - burnin_learning_rate) * (
                    global_step / burnin_steps) + burnin_learning_rate
        return tf.cond(
            global_step < burnin_steps,
            lambda: burnin_gar,
            lambda: tf.maximum(gar, min_learning_rate),
            name='learning_rate')
    return tf.maximum(gar, min_learning_rate, name='learning_rate')

该方法的参数说明如下:

- global_step:训练的全局步数或者迭代次数。

- learning_rate_base:初始学习率。

- learning_rate_decay_steps:学习率衰减步数。

- learning_rate_decay_factor:学习率衰减因子。

- burnin_learning_rate:热身阶段的学习率。

- burnin_steps:热身阶段的步数。

- min_learning_rate:学习率的下限。

- staircase:是否以阶梯状衰减学习率。

下面给出一个使用例子:

import tensorflow as tf
from object_detection.utils.learning_schedules import exponential_decay_with_burnin

global_step = tf.Variable(0, trainable=False)

learning_rate = exponential_decay_with_burnin(global_step,
                                              learning_rate_base=0.01,
                                              learning_rate_decay_steps=1000,
                                              learning_rate_decay_factor=0.1,
                                              burnin_learning_rate=0.001,
                                              burnin_steps=500,
                                              min_learning_rate=0.0001,
                                              staircase=True)

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)

在上述例子中,定义了一个全局步数为global_step的变量,使用exponential_decay_with_burnin()方法根据全局步数来调整学习率的大小。在这里,初始学习率为0.01,学习率衰减步数为1000,学习率衰减因子是0.1,热身阶段学习率为0.001,热身步数为500,学习率的下限为0.0001。

最后,将得到的学习率应用到优化器中进行训练。

使用exponential_decay_with_burnin()方法可以有效提高目标检测算法的学习效果和训练速度,通过调整学习率的大小,可以更好地适应不同的训练阶段,从而达到更好的效果。