优化目标检测算法的学习率衰减方法——object_detection.utils.learning_schedulesexponential_decay_with_burnin()
发布时间:2024-01-04 05:16:49
目标检测算法的学习率衰减方法是为了提高算法的收敛速度和效果。学习率衰减方法根据训练的步数或者迭代次数来调整学习率的大小,以使得训练过程中的学习率逐渐变小。这里介绍了一种常用的学习率衰减方法——exponential_decay_with_burnin(),该方法将学习率设置为指数衰减,并在训练初始阶段进行热身。
exponential_decay_with_burnin()定义如下:
def exponential_decay_with_burnin(global_step,
learning_rate_base,
learning_rate_decay_steps,
learning_rate_decay_factor,
burnin_learning_rate=0.0,
burnin_steps=0,
min_learning_rate=0.0,
staircase=True):
"""Exponential decay schedule with burn-in period."""
if learning_rate_decay_factor <= 0.0:
raise ValueError('learning_rate_decay_factor must be > 0.0.')
if burnin_learning_rate < 0.0:
raise ValueError('burnin_learning_rate must be >= 0.0.')
if learning_rate_base < burnin_learning_rate:
raise ValueError('learning_rate_base must be >= burnin_learning_rate.')
if global_step is None:
raise ValueError('global_step is required for exponential decay.')
gar = tf.train.exponential_decay(
learning_rate_base,
global_step - burnin_steps,
learning_rate_decay_steps,
learning_rate_decay_factor,
staircase,
name='exponential_decay_learning_rate')
if burnin_steps > 0:
if staircase:
burnin_gar = tf.train.exponential_decay(
learning_rate_base,
global_step,
burnin_steps,
learning_rate_decay_factor,
staircase=True,
name='burnin_exponential_decay_learning_rate')
else:
burnin_gar = (learning_rate_base - burnin_learning_rate) * (
global_step / burnin_steps) + burnin_learning_rate
return tf.cond(
global_step < burnin_steps,
lambda: burnin_gar,
lambda: tf.maximum(gar, min_learning_rate),
name='learning_rate')
return tf.maximum(gar, min_learning_rate, name='learning_rate')
该方法的参数说明如下:
- global_step:训练的全局步数或者迭代次数。
- learning_rate_base:初始学习率。
- learning_rate_decay_steps:学习率衰减步数。
- learning_rate_decay_factor:学习率衰减因子。
- burnin_learning_rate:热身阶段的学习率。
- burnin_steps:热身阶段的步数。
- min_learning_rate:学习率的下限。
- staircase:是否以阶梯状衰减学习率。
下面给出一个使用例子:
import tensorflow as tf
from object_detection.utils.learning_schedules import exponential_decay_with_burnin
global_step = tf.Variable(0, trainable=False)
learning_rate = exponential_decay_with_burnin(global_step,
learning_rate_base=0.01,
learning_rate_decay_steps=1000,
learning_rate_decay_factor=0.1,
burnin_learning_rate=0.001,
burnin_steps=500,
min_learning_rate=0.0001,
staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)
在上述例子中,定义了一个全局步数为global_step的变量,使用exponential_decay_with_burnin()方法根据全局步数来调整学习率的大小。在这里,初始学习率为0.01,学习率衰减步数为1000,学习率衰减因子是0.1,热身阶段学习率为0.001,热身步数为500,学习率的下限为0.0001。
最后,将得到的学习率应用到优化器中进行训练。
使用exponential_decay_with_burnin()方法可以有效提高目标检测算法的学习效果和训练速度,通过调整学习率的大小,可以更好地适应不同的训练阶段,从而达到更好的效果。
