object_detection.utils.learning_schedulesexponential_decay_with_burnin()函数的应用与实例分析
object_detection.utils.learning_schedules.exponential_decay_with_burnin()函数是TensorFlow Object Detection API中定义的一个学习率衰减函数。该函数根据给定的参数,在训练过程中自动调整学习率。
这个函数提供了一个指数衰减的学习率策略,其中包括一个burn-in期,在这个期间学习率会以较大的步幅进行衰减,然后再进行指数衰减。
该函数的定义如下:
def exponential_decay_with_burnin(
global_step,
initial_learning_rate,
decay_steps,
decay_factor,
burnin_learning_rate=0.1,
burnin_steps=500,
staircase=True):
"""Exponential decay schedule with burn-in period.
Args:
global_step: int tensor representing global step.
initial_learning_rate: float, initial learning rate.
decay_steps: int, number of steps between each decay.
decay_factor: float, decay factor.
burnin_learning_rate: float, initial learning rate for burn-in period.
burnin_steps: int, number of steps for burn-in period.
staircase: bool, whether to apply staircase decay.
Returns:
Tensor representing learning rate
"""
if burnin_learning_rate == 0:
return tf.compat.v1.train.exponential_decay(
initial_learning_rate,
global_step,
decay_steps,
decay_factor,
staircase=staircase)
linearly_decaying_learning_rate = (
(initial_learning_rate - burnin_learning_rate) / burnin_steps)
learning_rate = tf.cond(
pred=global_step < burnin_steps,
true_fn=lambda: burnin_learning_rate + global_step *
linearly_decaying_learning_rate,
false_fn=lambda: tf.compat.v1.train.exponential_decay(
initial_learning_rate,
global_step - burnin_steps,
decay_steps,
decay_factor,
staircase=staircase))
return learning_rate
该函数接收以下参数:
- global_step:表示训练的全局步数的Tensor
- initial_learning_rate:初始学习率的float值
- decay_steps:每次衰减之间的步数
- decay_factor:衰减因子
- burnin_learning_rate:默认为0.1,burn-in期的初始学习率
- burnin_steps:默认为500,burn-in期的步数
- staircase:默认为True,是否应用阶梯衰减
根据这些参数,函数会返回一个Tensor,表示在训练过程中的学习率。
下面是一个例子,演示如何使用exponential_decay_with_burnin()函数:
import tensorflow as tf
from object_detection.utils import learning_schedules
# 定义参数
global_step = tf.Variable(0, trainable=False)
initial_learning_rate = 0.01
decay_steps = 100
decay_factor = 0.1
burnin_learning_rate = 0.1
burnin_steps = 50
# 调用exponential_decay_with_burnin()函数
learning_rate = learning_schedules.exponential_decay_with_burnin(
global_step,
initial_learning_rate,
decay_steps,
decay_factor,
burnin_learning_rate,
burnin_steps)
# 打印学习率
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
current_lr = sess.run(learning_rate)
print("Step {}: Learning Rate = {}".format(i, current_lr))
sess.run(tf.assign_add(global_step, 1))
在这个例子中,我们定义了一些参数,并使用exponential_decay_with_burnin()函数来计算学习率。然后,通过执行tensorflow会话,我们可以打印出在训练过程中的学习率。
在前50个step,学习率保持为0.1(burn-in期)。接下来,根据指数衰减的策略,学习率会以指数方式衰减。每100个step,学习率会乘以0.1,直到学习率降至0.01。
通过使用exponential_decay_with_burnin()函数,我们可以轻松调整学习率的变化,以提高模型的训练效果。
