使用Python构建ResNet_v1_101网络模型的步骤
发布时间:2023-12-24 12:31:07
构建ResNet_v1_101网络模型的步骤如下:
1.导入所需的库
首先,我们需要导入Python中的一些常用库,例如:tensorflow,keras,numpy等。
import tensorflow as tf from tensorflow.keras import layers import numpy as np
2.定义基础卷积模块
在ResNet中,基础的卷积模块是由两层卷积组成的,每层卷积之后都有一个批量归一化(BatchNormalization)操作,加入残差连接,最后再经过ReLU激活函数。
def basic_conv_block(inputs, filters):
x = layers.Conv2D(filters, kernel_size=3, strides=1, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
x = layers.Conv2D(filters, kernel_size=3, strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Add()([x, inputs])
x = layers.ReLU()(x)
return x
3.定义bottleneck卷积模块
ResNet_v1_101网络模型中使用了bottleneck结构,它由1x1,3x3和1x1的卷积组成,同时在 个1x1卷积和最后一个1x1卷积中引入了投影层(Projection)操作。
def bottleneck_block(inputs, filters, strides=1, projection=True):
residual = inputs
if projection:
projection = layers.Conv2D(filters*4, kernel_size=1, strides=strides)(residual)
projection = layers.BatchNormalization()(projection)
residual = projection
x = layers.Conv2D(filters, kernel_size=1, strides=1)(inputs)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
x = layers.Conv2D(filters, kernel_size=3, strides=strides, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
x = layers.Conv2D(filters*4, kernel_size=1, strides=1)(x)
x = layers.BatchNormalization()(x)
x = layers.Add()([x, residual])
x = layers.ReLU()(x)
return x
4.构建ResNet_v1_101网络模型
ResNet_v1_101网络模型由多个堆叠的bottleneck卷积模块和池化层组成,其中根据不同层的要求进行不同的步长和输出通道数设置。
def ResNet_v1_101(input_shape=(224, 224, 3), num_classes=1000):
inputs = tf.keras.Input(shape=input_shape)
x = layers.Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = bottleneck_block(x, filters=64, strides=1, projection=False)
x = bottleneck_block(x, filters=64, strides=1, projection=False)
x = bottleneck_block(x, filters=64, strides=1, projection=False)
x = bottleneck_block(x, filters=128, strides=2, projection=True)
x = bottleneck_block(x, filters=128, strides=1, projection=False)
x = bottleneck_block(x, filters=128, strides=1, projection=False)
x = bottleneck_block(x, filters=128, strides=1, projection=False)
x = bottleneck_block(x, filters=256, strides=2, projection=True)
for _ in range(22):
x = bottleneck_block(x, filters=256, strides=1, projection=False)
x = bottleneck_block(x, filters=512, strides=2, projection=True)
x = bottleneck_block(x, filters=512, strides=1, projection=False)
x = bottleneck_block(x, filters=512, strides=1, projection=False)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
return model
5.数据准备和训练
使用准备好的数据对ResNet_v1_101网络模型进行训练。这里以CIFAR-10数据集为例进行训练。
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
model = ResNet_v1_101(input_shape=(32, 32, 3), num_classes=10)
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=64, epochs=100, validation_data=(x_test, y_test))
通过以上步骤,我们可以构建并训练出一个ResNet_v1_101网络模型,用于图像分类任务。根据具体需求,可以进行相应的调整和修改。
