欢迎访问宙启技术站
智能推送

使用Python实现的ResNet_v1_101模型

发布时间:2023-12-24 12:29:15

ResNet_v1_101是深度残差网络(Residual Network)的一个版本,由Kaiming He等人提出。它通过引入残差块(Residual Block)解决了深度神经网络训练过程中的梯度消失和梯度爆炸问题,使得网络可以很深但仍然具备良好的训练性能。

要使用Python实现ResNet_v1_101模型,首先需要安装相应的深度学习框架,如TensorFlow或PyTorch。在这里,我们以PyTorch为例进行说明。

首先,我们需要导入必要的库:

import torch
import torch.nn as nn
import torch.nn.functional as F

然后,我们定义ResNet_v1_101模型的基本组件。

ResNet_v1_101模型由一个卷积层、四个残差阶段和一个全连接层组成。我们可以使用PyTorch提供的预训练模型来加载已经训练好的网络权重。以下是模型的定义:

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.maxpool(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)
        return out

现在,我们可以实例化一个ResNet_v1_101模型对象,并使用预训练模型加载权重:

model = ResNet(Bottleneck, [3, 4, 23, 3])
model.load_state_dict(torch.load('resnet_v1_101.pth'))

要使用这个模型进行预测,我们需要将图像转换为模型接受的格式,然后通过模型进行预测:

from torchvision import transforms
from PIL import Image

# 加载图像
image = Image.open('image.jpg')

# 定义转换器
transform = transforms.Compose([
    transforms.Resize(256),  # 调整图像尺寸为256x256像素
    transforms.CenterCrop(224),  # 从图像中心裁剪出224x224像素的图像
    transforms.ToTensor(),  # 将图像转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 对图像进行归一化
])

# 预处理图像
input_tensor = transform(image).unsqueeze(0)

# 使用模型进行预测
output = model(input_tensor)

# 打印预测结果
_, predicted = torch.max(output.data, 1)
print('Predicted class:', predicted.item())

以上就是使用Python实现ResNet_v1_101模型的方法和一个预测例子。通过加载预训练模型和对图像进行预处理,我们可以用ResNet_v1_101模型对输入图像进行分类预测。