Python中使用ResNet50进行图像风格迁移的编程示例
发布时间:2023-12-24 07:19:12
使用ResNet50进行图像风格迁移的编程示例:
首先,我们需要导入所需的库和模块:
import torch import torch.nn as nn import torch.optim as optim from torchvision import models, transforms from PIL import Image import matplotlib.pyplot as plt
然后,我们需要定义一些辅助函数来加载和预处理图像:
def load_image(image_path, transform=None, max_size=None, shape=None):
image = Image.open(image_path)
if max_size is not None:
factor = max_size / max(image.size)
size = tuple(int(x * factor) for x in image.size)
image = image.resize(size, Image.ANTIALIAS)
if shape is not None:
image = image.resize(shape, Image.LANCZOS)
if transform is not None:
image = transform(image).unsqueeze(0)
return image
def plot_image(image, title=None):
image = image.squeeze(0)
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001)
def save_image(tensor, path):
image = tensor.cpu().clone()
image = image.squeeze(0)
image = unloader(image)
image.save(path)
接下来,我们需要加载并预处理输入图像和风格图像:
content_image = load_image("input.jpg", transform=preprocess, max_size=400)
style_image = load_image("style.jpg", transform=preprocess, shape=[content_image.size(2), content_image.size(3)])
然后,我们需要定义内容损失和风格损失函数:
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, input):
self.loss = nn.functional.mse_loss(input, self.target)
return input
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = nn.functional.mse_loss(G, self.target)
return input
def gram_matrix(input):
batch_size, feature_maps, height, width = input.size()
features = input.view(batch_size * feature_maps, height * width)
G = torch.mm(features, features.t())
return G.div(batch_size * feature_maps * height * width)
接下来,我们需要修改ResNet50的最后一层,并定义模型的输入和输出层:
resnet = models.resnet50(pretrained=True).features
for param in resnet.parameters():
param.requires_grad_(False)
layers = {
'0': 'conv1',
'5': 'layer1',
'10': 'layer2',
'19': 'layer3',
'28': 'layer4'
}
content_layers = ['28']
style_layers = ['0', '5', '10', '19', '28']
model = nn.Sequential()
for name, layer in resnet._modules.items():
model.add_module(name, layer)
if name in layers:
if name in content_layers:
target = model(content_image).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss", content_loss)
if name in style_layers:
target_feature = model(style_image).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss", style_loss)
接下来,我们需要定义优化器和迭代函数以及迭代次数:
optimizer = optim.LBFGS([input_image.requires_grad_()])
num_steps = 300
for i in range(num_steps):
def closure():
input_image.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_image)
style_score = 0
content_score = 0
for layer in model.children():
if isinstance(layer, ContentLoss):
content_score += layer.loss
if isinstance(layer, StyleLoss):
style_score += layer.loss
loss = content_weight * content_score + style_weight * style_score
loss.backward()
return style_score + content_score
optimizer.step(closure)
最后,我们可以保存生成的图像:
save_image(input_image, "output.jpg")
以上是使用ResNet50进行图像风格迁移的编程示例。在这个例子中,我们使用了预训练的ResNet50模型来提取图像的内容和风格特征,并通过调整输入图像来最小化内容和风格损失来实现风格迁移。
