欢迎访问宙启技术站
智能推送

Python中使用ResNet50进行图像生成对抗网络(GAN)实例

发布时间:2023-12-24 07:16:41

生成对抗网络(GAN)是一种用于生成新的、以假乱真的图像的深度学习技术。GAN包括两个关键组件:生成器和判别器。生成器负责生成伪造的图像,而判别器负责判断一张图像是真实还是伪造的。

ResNet50是一种深度卷积神经网络,具有50个卷积层,被广泛应用于图像分类和目标检测任务。在GAN中,我们可以使用ResNet50作为判别器,以帮助判断生成的图像的真实性。

下面是一个使用ResNet50进行图像生成对抗网络的示例:

首先,我们需要导入必要的库和模块:

import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Conv2D, Conv2DTranspose
from tensorflow.keras.layers import LeakyReLU, Dropout
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical

然后,加载并预处理CIFAR-10数据集:

# 载入CIFAR-10数据集
(x_train, y_train), (_, _) = cifar10.load_data()

# 预处理数据集
x_train = x_train.astype('float32') / 255
y_train = to_categorical(y_train, 10)

接下来,我们可以定义生成器模型和判别器模型:

# 定义生成器模型
def build_generator(input_shape):
    model = Sequential()
    model.add(Dense(256, input_shape=input_shape))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(512))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(1024))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(2048))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(np.prod(input_shape), activation='tanh'))
    model.add(Reshape(input_shape))
    return model

# 定义判别器模型
def build_discriminator(input_shape):
    model = ResNet50(include_top=False, input_shape=input_shape, pooling='avg')
    model.trainable = False
    model.add(Flatten())
    model.add(Dense(512))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(1, activation='sigmoid'))
    return model

然后,我们可以组合生成器和判别器来构建GAN模型:

# 定义GAN模型
def build_gan(generator, discriminator):
    gan_input = Input(shape=(100,))
    fake_image = generator(gan_input)
    gan_output = discriminator(fake_image)
    gan = Model(gan_input, gan_output)
    return gan
    
# 构建生成器和判别器
generator = build_generator((100,))
discriminator = build_discriminator((32, 32, 3))

# 构建GAN模型
gan = build_gan(generator, discriminator)

接下来,我们可以训练GAN模型:

# 定义损失函数和优化器
loss = 'binary_crossentropy'
optimizer = Adam(lr=0.0002, beta_1=0.5)

# 编译判别器模型
discriminator.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])

# 编译GAN模型
generator_input = Input(shape=(100,))
generator_image = generator(generator_input)
discriminator.trainable = False
gan_output = discriminator(generator_image)
gan = Model(generator_input, gan_output)
gan.compile(loss=loss, optimizer=optimizer)

# 训练GAN模型
epochs = 100
batch_size = 128

for epoch in range(epochs):
    for batch in range(x_train.shape[0] // batch_size):
        # 随机选择一批真实图像
        real_images = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
        
        # 随机生成一批噪声
        noise = np.random.normal(0, 1, size=(batch_size, 100))
        
        # 生成一批伪造图像
        fake_images = generator.predict(noise)
        
        # 训练判别器模型
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(fake_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练GAN模型
        noise = np.random.normal(0, 1, size=(batch_size, 100))
        gan_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
    # 输出损失值
    print(f'Epoch {epoch}/{epochs} - Discriminator Loss: {discriminator_loss[0]} - GAN Loss: {gan_loss}')

在训练完成后,我们可以使用生成器生成新的图像:

# 随机生成一批噪声
noise = np.random.normal(0, 1, size=(10, 100))

# 使用生成器生成新的图像
generated_images = generator.predict(noise)

# 显示生成的图像
import matplotlib.pyplot as plt

fig, axs = plt.subplots(1, 10, figsize=(10, 1))
fig.suptitle('Generated Images')

for i in range(10):
    axs[i].imshow(generated_images[i])
    axs[i].axis('off')

plt.show()

这是一个使用ResNet50进行图像生成对抗网络的简单示例。通过训练这个模型,我们可以生成伪造的图像,这些图像可以以假乱真。