在Python中使用nets.resnet_utils构建自动驾驶神经网络
发布时间:2023-12-19 06:36:55
在Python中使用nets.resnet_utils构建自动驾驶神经网络,可以通过下面的示例来演示。
首先,我们需要导入所需的库和模块:
import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPooling2D, AveragePooling2D, Flatten, Dense from tensorflow.keras.models import Model from tensorflow.keras.initializers import glorot_uniform from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical from nets.resnet_utils import conv_block, identity_block
接下来,我们定义一个ResNet模型的类。在这个类中,我们定义了ResNet的架构和前向传播的计算流程。
class ResNetModel(Model):
def __init__(self, input_shape=(64, 64, 3), classes=2):
super(ResNetModel, self).__init__()
self.conv1 = Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), padding='same', kernel_initializer=glorot_uniform(seed=0))
self.bn1 = BatchNormalization(axis=3)
self.act1 = Activation('relu')
self.pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))
self.conv2_1 = conv_block(filters=[64, 64, 256], stage=2, block='a', stride=1)
self.id2_2 = identity_block(filters=[64, 64, 256], stage=2, block='b')
self.id2_3 = identity_block(filters=[64, 64, 256], stage=2, block='c')
self.conv3_1 = conv_block(filters=[128, 128, 512], stage=3, block='a', stride=2)
self.id3_2 = identity_block(filters=[128, 128, 512], stage=3, block='b')
self.id3_3 = identity_block(filters=[128, 128, 512], stage=3, block='c')
self.id3_4 = identity_block(filters=[128, 128, 512], stage=3, block='d')
self.conv4_1 = conv_block(filters=[256, 256, 1024], stage=4, block='a', stride=2)
self.id4_2 = identity_block(filters=[256, 256, 1024], stage=4, block='b')
self.id4_3 = identity_block(filters=[256, 256, 1024], stage=4, block='c')
self.id4_4 = identity_block(filters=[256, 256, 1024], stage=4, block='d')
self.id4_5 = identity_block(filters=[256, 256, 1024], stage=4, block='e')
self.id4_6 = identity_block(filters=[256, 256, 1024], stage=4, block='f')
self.conv5_1 = conv_block(filters=[512, 512, 2048], stage=5, block='a', stride=2)
self.id5_2 = identity_block(filters=[512, 512, 2048], stage=5, block='b')
self.id5_3 = identity_block(filters=[512, 512, 2048], stage=5, block='c')
self.avg_pool = AveragePooling2D(pool_size=(2, 2))
self.flatten = Flatten()
self.fc = Dense(classes, activation='softmax', kernel_initializer=glorot_uniform(seed=0))
def call(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.pool1(x)
x = self.conv2_1(x)
x = self.id2_2(x)
x = self.id2_3(x)
x = self.conv3_1(x)
x = self.id3_2(x)
x = self.id3_3(x)
x = self.id3_4(x)
x = self.conv4_1(x)
x = self.id4_2(x)
x = self.id4_3(x)
x = self.id4_4(x)
x = self.id4_5(x)
x = self.id4_6(x)
x = self.conv5_1(x)
x = self.id5_2(x)
x = self.id5_3(x)
x = self.avg_pool(x)
x = self.flatten(x)
output = self.fc(x)
return output
然后,我们定义一些训练和评估函数。
def train(X_train, Y_train, X_val, Y_val, num_epochs=10, batch_size=64, learning_rate=0.001):
num_batches = int(X_train.shape[0] / batch_size)
model = ResNetModel(input_shape=X_train.shape[1:], classes=Y_train.shape[1])
optimizer = Adam(learning_rate=learning_rate)
loss_fn = tf.keras.losses.CategoricalCrossentropy()
train_loss = tf.keras.metrics.Mean()
train_accuracy = tf.keras.metrics.CategoricalAccuracy()
val_loss = tf.keras.metrics.Mean()
val_accuracy = tf.keras.metrics.CategoricalAccuracy()
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch+1, num_epochs))
train_loss.reset_states()
train_accuracy.reset_states()
val_loss.reset_states()
val_accuracy.reset_states()
for batch in range(num_batches):
x_batch = X_train[batch*batch_size:(batch+1)*batch_size,:,:,:]
y_batch = Y_train[batch*batch_size:(batch+1)*batch_size,:]
with tf.GradientTape() as tape:
logits = model(x_batch)
loss_value = loss_fn(y_batch, logits)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
train_loss(loss_value)
train_accuracy(y_batch, logits)
for batch in range(int(X_val.shape[0] / batch_size)):
x_val_batch = X_val[batch*batch_size:(batch+1)*batch_size,:,:,:]
y_val_batch = Y_val[batch*batch_size:(batch+1)*batch_size,:]
val_logits = model(x_val_batch)
val_loss_value = loss_fn(y_val_batch, val_logits)
val_loss(val_loss_value)
val_accuracy(y_val_batch, val_logits)
print("Train Loss: {:.4f}, Train Accuracy: {:.4f}, Val Loss: {:.4f}, Val Accuracy: {:.4f}".format(
train_loss.result(), train_accuracy.result(), val_loss.result(), val_accuracy.result()))
def evaluate(X_test, Y_test, batch_size=64):
num_batches = int(X_test.shape[0] / batch_size)
model = ResNetModel(input_shape=X_test.shape[1:], classes=Y_test.shape[1])
loss_fn = tf.keras.losses.CategoricalCrossentropy()
test_loss = tf.keras.metrics.Mean()
test_accuracy = tf.keras.metrics.CategoricalAccuracy()
for batch in range(num_batches):
x_batch = X_test[batch*batch_size:(batch+1)*batch_size,:,:,:]
y_batch = Y_test[batch*batch_size:(batch+1)*batch_size,:]
test_logits = model(x_batch)
test_loss_value = loss_fn(y_batch, test_logits)
test_loss(test_loss_value)
test_accuracy(y_batch, test_logits)
print("Test Loss: {:.4f}, Test Accuracy: {:.4f}".format(test_loss.result(), test_accuracy.result()))
最后,在主函数中调用训练和评估函数。
def main():
# 加载数据、预处理数据等操作
...
# 调用训练函数进行训练
train(X_train, Y_train, X_val, Y_val, num_epochs=10, batch_size=64, learning_rate=0.001)
# 调用评估函数进行测试评估
evaluate(X_test, Y_test, batch_size=64)
if __name__ == '__main__':
main()
以上是使用nets.resnet_utils构建自动驾驶神经网络的一个示例。您可以根据自己的数据和需求进行相应的修改和调整。
