在Python中使用nets.resnet_utils构建残差网络
发布时间:2023-12-19 06:33:35
在Python中使用nets.resnet_utils构建残差网络,可以使用以下步骤:
1. 导入所需的库和模块:
import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import Model from tensorflow.keras.initializers import glorot_uniform
2. 定义残差块函数:
def identity_block(X, f, filters, stage, block):
# 定义命名规则
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器数量
F1, F2, F3 = filters
# 保存输入值,用于捷径连接
X_shortcut = X
# 部分
X = layers.Conv2D(F1, (1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2a',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = layers.Activation('relu')(X)
# 第二部分
X = layers.Conv2D(F2, (f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = layers.Activation('relu')(X)
# 第三部分
X = layers.Conv2D(F3, (1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 添加捷径和恒等映射
X = layers.Add()([X, X_shortcut])
X = layers.Activation('relu')(X)
return X
3. 定义卷积块函数:
def convolutional_block(X, f, filters, stage, block, s=2):
# 定义命名规则
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器数量
F1, F2, F3 = filters
# 保存输入值,用于捷径连接
X_shortcut = X
# 部分
X = layers.Conv2D(F1, (1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = layers.Activation('relu')(X)
# 第二部分
X = layers.Conv2D(F2, (f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = layers.Activation('relu')(X)
# 第三部分
X = layers.Conv2D(F3, (1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 捷径分支
X_shortcut = layers.Conv2D(F3, (1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',
kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
X_shortcut = layers.BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
# 添加捷径和主路径
X = layers.Add()([X, X_shortcut])
X = layers.Activation('relu')(X)
return X
4. 定义ResNet模型:
def ResNet50(input_shape=(64, 64, 3), classes=6):
# 输入图像
X_input = layers.Input(input_shape)
# 零填充
X = layers.ZeroPadding2D((3, 3))(X_input)
# 组
X = layers.Conv2D(64, (7, 7), strides=(2, 2), name='conv1',
kernel_initializer=glorot_uniform(seed=0))(X)
X = layers.BatchNormalization(axis=3, name='bn_conv1')(X)
X = layers.Activation('relu')(X)
X = layers.MaxPooling2D((3, 3), strides=(2, 2))(X)
# 第二组
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block='a', s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
# 第三组
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
# 第四组
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# 第五组
X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# 均值池化
X = layers.AveragePooling2D(pool_size=(2, 2), name="avg_pool")(X)
# 输出层
X = layers.Flatten()(X)
X = layers.Dense(classes, activation='softmax', name='fc' + str(classes),
kernel_initializer=glorot_uniform(seed=0))(X)
# 创建模型
model = Model(inputs=X_input, outputs=X, name='ResNet50')
return model
5. 使用示例:
model = ResNet50(input_shape=(64, 64, 3), classes=6) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=10, batch_size=32)
以上是使用nets.resnet_utils构建残差网络的步骤,这个网络模型适用于图像分类任务,并且可以根据不同的输入尺寸和类别数量进行调整。
