欢迎访问宙启技术站
智能推送

ResNet_arg_scope()在Python中的实际应用

发布时间:2023-12-16 06:37:00

ResNet_arg_scope()是深度学习框架TensorFlow中ResNet的arg_scope方法,用于定义ResNet的默认参数和运算规则。它可以简化ResNet的定义过程,在实际应用中可以方便地使用。

下面是一个实际应用ResNet_arg_scope()的例子:

import tensorflow as tf
slim = tf.contrib.slim

def bottleneck(inputs, depth, depth_bottleneck, stride, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
        shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None,
                               activation_fn=None, scope='shortcut')
        residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
        residual = slim.conv2d(residual, depth_bottleneck, 3, stride=stride, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None,
                               activation_fn=None, scope='conv3')

        output = shortcut + residual

    return slim.utils.collect_named_outputs(None, sc.name, output)

def resnet_v2(inputs, blocks, num_classes=None, global_pool=True, include_root_block=True,
              reuse=None, scope=None):
    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope([slim.conv2d, bottleneck,
                             slim.fully_connected],
                            outputs_collections=end_points_collection):
            with slim.arg_scope([slim.batch_norm],
                                is_training=False):
                net = inputs
                if include_root_block:
                    with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None):
                        net = slim.conv2d(net, 64, [7, 7], stride=2, scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = slim.stack(net, bottleneck, blocks, scope='block')
                net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    net = tf.reduce_mean(net, [1, 2], keepdims=True, name='pool5')
                if num_classes is not None:
                    net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                                      normalizer_fn=None, scope='logits')
                end_points = slim.utils.convert_collection_to_dict(end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = slim.softmax(net, scope='predictions')
                return net, end_points

def resnet_v2_50(inputs, num_classes=None, global_pool=True, reuse=None, scope='resnet_v2_50'):
    blocks = [
        resnet_v2.resnet_v2_block('block1', base_depth=64, num_units=3, stride=2),
        resnet_v2.resnet_v2_block('block2', base_depth=128, num_units=4, stride=2),
        resnet_v2.resnet_v2_block('block3', base_depth=256, num_units=6, stride=2),
        resnet_v2.resnet_v2_block('block4', base_depth=512, num_units=3, stride=1),
    ]
    return resnet_v2(inputs, blocks, num_classes, global_pool,
                     include_root_block=True, reuse=reuse, scope=scope)


inputs = tf.placeholder(tf.float32, shape=[None, 224, 224, 3])
net, end_points = resnet_v2_50(inputs, num_classes=1000)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(net, feed_dict={inputs: np.random.rand(1, 224, 224, 3)}))

上述代码定义了一个ResNet-50的网络结构,并使用了ResNet_arg_scope()来简化ResNet的定义过程。这个网络可以接受输入尺寸为224x224x3的图像,输出1000个类别的预测结果。

在使用ResNet_arg_scope()的过程中,通过调用slim.arg_scope()方法可以设置默认参数,避免在每个层的定义中显式设置参数。比如在上述代码中,通过设置slim.arg_scope([slim.conv2d, bottleneck, slim.fully_connected], outputs_collections=end_points_collection),将[slim.conv2d, bottleneck, slim.fully_connected]这些方法的默认参数outputs_collections设置为end_points_collection。

这样,在后续的层定义中,只需要传入输入和设置相应的名称即可,无需再传入outputs_collections参数。在上述代码中,slim.conv2d、slim.batch_norm等方法的定义都省略了outputs_collections参数,而ResNet_arg_scope()的设置会自动应用到这些层中。

通过ResNet_arg_scope()的应用,可以大大简化ResNet的定义过程,提高代码的可读性和可维护性。同时,参数的统一设置也可以提升模型训练的效率和性能。

总之,ResNet_arg_scope()在Python中的实际应用可以让开发者更方便地定义和使用ResNet模型,提高开发效率和模型性能。