欢迎访问宙启技术站
智能推送

使用Python随机生成orthogonal_()相关的中文标题

发布时间:2023-12-12 15:24:21

1. 正交化函数orthogonal_cookiedough()的实现及用法

示例:

from scipy.linalg import orthogonal
import numpy as np

def orthogonal_cookiedough(matrix):
    return orthogonal(matrix)

A = np.array([[4, 2], [2, 5]])
B = orthogonal_cookiedough(A)

print("Original Matrix:")
print(A)
print("
Orthogonal Matrix:")
print(B)

2. 使用orthogonal_einstein()进行正交矩阵转换的示例

示例:

import numpy as np

def orthogonal_einstein(matrix):
    eig_val, eig_vec = np.linalg.eig(matrix)
    return np.dot(eig_vec, np.linalg.inv(eig_vec.T))

A = np.array([[4, 2], [2, 5]])
B = orthogonal_einstein(A)

print("Original Matrix:")
print(A)
print("
Orthogonal Matrix:")
print(B)

3. 利用orthogonal_齐次坐标系()实现正交变换的示例

示例:

import numpy as np

def orthogonal_齐次坐标系(matrix):
    return np.dot(matrix, matrix.T)

A = np.array([[4, 2], [2, 5]])
B = orthogonal_齐次坐标系(A)

print("Original Matrix:")
print(A)
print("
Orthogonal Matrix:")
print(B)

4. Orthogonal_utility()的应用:在傅里叶分析中的正交性检验

示例:

import numpy as np

def Orthogonal_utility(signal1, signal2):
    return np.sum(signal1*signal2) == 0

# 验证两个正弦信号是否正交
f = np.linspace(0, 2*np.pi, 100)
signal1 = np.sin(f)
signal2 = np.cos(f)

print("Are the signals orthogonal?", Orthogonal_utility(signal1, signal2))

5. 使用orthogonal_gramschmidt()进行Gram-Schmidt正交化的示例

示例:

import numpy as np

def orthogonal_gramschmidt(matrix):
    Q, R = np.linalg.qr(matrix)
    return Q

A = np.array([[4, 2], [2, 5]])
B = orthogonal_gramschmidt(A)

print("Original Matrix:")
print(A)
print("
Orthogonal Matrix:")
print(B)

6. 正交插值方法orthogonal_interp()的使用示例

示例:

from scipy.interpolate import orthogonal_interp

x = np.array([0, 1, 2, 3, 4])
y = np.array([0, 2, 4, 6, 8])
x_new = np.linspace(0, 4, num=10)
y_new = orthogonal_interp(x, y, x_new)

print("Original x values:")
print(x)
print("
Original y values:")
print(y)
print("
Interpolated y values:")
print(y_new)

7. 利用orthogonal_projection()实现正交投影的示例

示例:

import numpy as np

def orthogonal_projection(vector1, vector2):
    return np.dot(vector1, vector2) / np.dot(vector2, vector2) * vector2

v1 = np.array([3, 4])
v2 = np.array([1, 0])

projection = orthogonal_projection(v1, v2)

print("Original Vector:")
print(v1)
print("
Orthogonal Projection:")
print(projection)

8. 使用orthogonal_design()生成正交实验设计的示例

示例:

from scipy.stats import orthogonal_design

matrix = orthogonal_design(3, 2)

print("Orthogonal Matrix:")
print(matrix)

9. 正交哈密顿算子orthogonal_hamiltonian()的应用示例

示例:

from scipy.linalg import orthogonal_hamiltonian

matrix = np.array([[1, 2], [3, 4]])
hamiltonian = orthogonal_hamiltonian(matrix)

print("Original Matrix:")
print(matrix)
print("
Orthogonal Hamiltonian:")
print(hamiltonian)

10. 使用orthogonal_regression()进行正交回归分析的示例

示例:

import numpy as np
from sklearn.linear_model import orthogonal_regression

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.array([3, 4, 5, 6])

model = orthogonal_regression()
model.fit(X, y)

print("Original X values:")
print(X)
print("
Original y values:")
print(y)
print("
Coefficients:")
print(model.coef_)
print("
Intercept:")
print(model.intercept_)