欢迎访问宙启技术站
智能推送

使用Python库在VGG模型上进行图像迁移

发布时间:2023-12-12 04:26:58

图像迁移是一种将一张图像的内容和另一张图像的风格结合在一起的技术。使用VGG模型可以实现图像迁移,VGG模型是一个经典的深度卷积神经网络模型,可以用于图像分类任务。在图像迁移中,我们可以利用VGG模型的特征提取能力,将一个图像的特征提取出来,并将其应用到另一个图像上,从而实现图像迁移。

下面是一个使用Python库进行图像迁移的例子:

首先,我们需要导入所需的库:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

然后,我们可以定义一些辅助函数,用于加载VGG模型和图像的预处理:

def load_vgg_model(path, input_shape):
    vgg = tf.keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=input_shape)
    vgg.trainable = False
    model = tf.keras.models.Sequential()
    model.add(vgg)
    return model

def preprocess_image(image_path, target_size):
    img = tf.keras.preprocessing.image.load_img(image_path, target_size=target_size)
    img = tf.keras.preprocessing.image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = tf.keras.applications.vgg16.preprocess_input(img)
    return img

def deprocess_image(img):
    img = img.reshape((img.shape[1], img.shape[2], 3))
    img[:, :, 0] += 103.939
    img[:, :, 1] += 116.779
    img[:, :, 2] += 123.68
    img = img[:, :, ::-1]
    img = np.clip(img, 0, 255).astype('uint8')
    return img

接下来,我们可以定义图像迁移的函数:

def transfer_style(content_image_path, style_image_path, output_image_path, target_size=(224, 224), num_iterations=1000, content_weight=1.0e3, style_weight=1.0e-2):
    content_image = preprocess_image(content_image_path, target_size)
    style_image = preprocess_image(style_image_path, target_size)

    model = load_vgg_model('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', target_size + (3,))

    content_layer_name = 'block4_conv2'
    style_layer_names = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']

    content_outputs = model.get_layer(content_layer_name).output
    style_outputs = [model.get_layer(name).output for name in style_layer_names]

    feature_extractor = tf.keras.Model(inputs=model.inputs, outputs=[content_outputs] + style_outputs)
    
    def compute_loss(outputs):
        content_features = outputs[0]
        style_features = outputs[1:]
        content_loss = tf.reduce_mean(tf.square(content_features - content_image))
        style_loss = 0

        for style_feature in style_features:
            style_gram_matrix = tf.linalg.einsum('bijc,bijd->bcd', style_feature, style_feature)
            style_target_matrix = tf.linalg.einsum('bijc,bijd->bcd', style_image, style_image)
            style_loss += tf.reduce_mean(tf.square(style_gram_matrix - style_target_matrix))

        loss = content_weight * content_loss + style_weight * style_loss
        return loss
    
    @tf.function
    def train_step(image):
        with tf.GradientTape() as tape:
            outputs = feature_extractor(image)
            loss = compute_loss(outputs)

        gradients = tape.gradient(loss, image)
        optimizer.apply_gradients([(gradients, image)])
        image.assign(tf.clip_by_value(image, clip_value_min=-1, clip_value_max=1))

        return loss

    content_image = tf.Variable(content_image, dtype=tf.float32)

    optimizer = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)

    for i in range(num_iterations):
        loss = train_step(content_image)
        if i % 100 == 0:
            print(i, loss)

    output_image = deprocess_image(content_image.numpy())
    plt.imshow(output_image)
    plt.axis('off')
    plt.savefig(output_image_path, bbox_inches='tight', pad_inches=0)
    plt.close()

最后,我们可以调用这个函数进行图像迁移:

transfer_style('content_image.jpg', 'style_image.jpg', 'output_image.jpg')

上述代码中,我们首先加载VGG模型,并定义了图像的预处理和后处理函数。然后,我们定义了一个transfer_style函数,其中使用VGG模型进行图像特征提取,并通过调整图像使其内容和风格的特征保持一致。最后,我们可以调用transfer_style函数,并将content_image.jpg和style_image.jpg分别作为内容图像和风格图像进行图像迁移,结果将保存为output_image.jpg。

这就是一个使用Python库在VGG模型上进行图像迁移的例子。你可以根据自己的需求,调整代码中的参数和函数来实现更复杂的图像迁移任务。