欢迎访问宙启技术站
智能推送

快速实现VGG模型的Python代码

发布时间:2023-12-12 04:26:08

VGG模型是一种深度卷积神经网络,最初提出用于图像分类任务,具有非常好的性能。下面是一个快速实现VGG模型的Python代码,包括使用例子。

首先,我们需要导入相应的库:

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets

然后,我们定义一个VGG类来实现VGG模型:

class VGG(nn.Module):
    def __init__(self, features, num_classes=1000):
        super(VGG, self).__init__()
        self.features = features
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

我们还需要定义一个创建VGG模型的函数,可以根据指定的配置创建不同的VGG模型:

def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)

下面是VGG模型的几个常用配置:

cfgs = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

最后,我们可以使用VGG模型进行图像分类。首先,我们需要加载数据集:

transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

dataset = datasets.ImageFolder('path_to_dataset', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)

然后,我们可以创建一个VGG模型实例,并定义损失函数和优化器:

model = VGG(make_layers(cfgs['D']), num_classes=1000)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

接下来,我们开始训练模型:

num_epochs = 10
for epoch in range(num_epochs):
    for images, labels in dataloader:
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

最后,我们可以使用训练好的模型进行预测:

# 加载测试数据集
test_dataset = datasets.ImageFolder('path_to_test_dataset', transform=transform)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)

# 在测试数据集上进行预测
correct = 0
total = 0
with torch.no_grad():
    for images, labels in test_dataloader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

accuracy = correct / total
print('准确率:{}%'.format(100 * accuracy))

以上就是实现VGG模型的Python代码和使用例子。你可以根据需要修改VGG的配置和数据集路径来适应你的任务。