随机生成20个Python中的学习率调度器中文标题
学习率调度器(learning rate scheduler)是深度学习中常用的一种技术,用于控制模型训练过程中学习率(learning rate)的变化。在训练深度神经网络时,学习率的选择对模型的性能和收敛速度有着重要的影响。学习率调度器的作用就是自动地根据训练进展情况来适应地调整学习率,以帮助模型更好地收敛。
在Python中,有很多学习率调度器可以使用,下面是随机生成的20个学习率调度器的中文标题带使用例子:
1. 学习率衰减调度器(Learning Rate Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)
2. 线性学习率调度器(Linear Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 0.1 * (1 - epoch/num_epochs))
3. 学习率衰减步长调度器(Step Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
4. 学习率余弦退火调度器(Cosine Annealing Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingLR(optimizer, T_max=100, eta_min=0)
5. 学习率多项式退火调度器(Polynomial Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
6. 学习率多边形调度器(Poly Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import PolyLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = PolyLR(optimizer, max_epochs=num_epochs, power=0.9)
7. 学习率周期性调度器(Cyclic Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CyclicLR
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
scheduler = CyclicLR(optimizer, base_lr=0.01, max_lr=0.1)
8. 学习率一次性衰减调度器(OneCycleLR Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import OneCycleLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = OneCycleLR(optimizer, max_lr=0.1, total_steps=1000)
9. 学习率指数调度器(Exponential Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = ExponentialLR(optimizer, gamma=0.9)
10. 学习率余弦退火复位调度器(Cosine Annealing with Warm Restarts Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
11. 学习率线性衰减调度器(Linear Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 0.1 * (1 - epoch/num_epochs))
12. 周期性学习率调度器(Cyclical Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CyclicLR
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
scheduler = CyclicLR(optimizer, base_lr=0.01, max_lr=0.1)
13. 三角形学习率调度器(Triangular Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import TriangularLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = TriangularLR(optimizer, max_lr=0.1, total_steps=1000)
14. 学习率步长调度器(Step Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
15. 周期性余弦退火调度器(Cyclical Cosine Annealing Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
16. 学习率多边形退火调度器(Poly Decay Annealing Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
17. 周期性退火调度器(Cyclical Annealing Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
18. 策略性学习率调度器(Policy Learning Rate Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True)
19. 学习率指数退火调度器(Exponential Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = ExponentialLR(optimizer, gamma=0.9)
20. 学习率指数式衰减调度器(Exponential Decay Scheduler)
- 使用例子:
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)
以上是随机生成的20个学习率调度器的中文标题以及使用例
