欢迎访问宙启技术站
智能推送

Python生成20个包含LearningRateScheduler的中文标题

发布时间:2023-12-11 14:05:44

1. 学习率调度程序:以指数衰减方式调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler

def scheduler(epoch):
    return 0.01 * pow(0.1, epoch)

lr_scheduler = LearningRateScheduler(scheduler)

2. 学习率调度程序:按奇偶周期性调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler

def scheduler(epoch):
    if epoch % 2 == 0:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)

3. 学习率调度程序:根据训练损失调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, loss):
    if loss < 0.5:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)

4. 学习率调度程序:根据验证集准确率调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, accuracy):
    if accuracy > 0.9:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.2, patience=5, min_lr=0.0001)

5. 学习率调度程序:根据验证集损失调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, loss):
    if loss < 0.5:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.0001)

6. 学习率调度程序:根据训练步数调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(steps):
    if steps < 1000:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='steps', factor=0.2, patience=5, min_lr=0.0001)

7. 学习率调度程序:根据训练样本数量调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(samples):
    if samples < 10000:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='samples', factor=0.2, patience=5, min_lr=0.0001)

8. 学习率调度程序:逐渐减少学习率

from tensorflow.keras.callbacks import LearningRateScheduler

def scheduler(epoch):
    return 0.1 / (epoch + 1)

lr_scheduler = LearningRateScheduler(scheduler)

9. 学习率调度程序:逐渐增加学习率

from tensorflow.keras.callbacks import LearningRateScheduler

def scheduler(epoch):
    return 0.1 * (epoch + 1)

lr_scheduler = LearningRateScheduler(scheduler)

10. 学习率调度程序:周期性调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler

def scheduler(epoch):
    if epoch % 5 == 0:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)

11. 学习率调度程序:根据训练准确率调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, accuracy):
    if accuracy > 0.9:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='accuracy', factor=0.2, patience=5, min_lr=0.0001)

12. 学习率调度程序:根据训练集损失和准确率调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, loss, accuracy):
    if loss < 0.5 and accuracy > 0.9:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor=['loss', 'accuracy'], factor=0.2, patience=5, min_lr=0.0001)

13. 学习率调度程序:根据验证集损失和准确率调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, loss, accuracy):
    if loss < 0.5 and accuracy > 0.9:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor=['val_loss', 'val_accuracy'], factor=0.2, patience=5, min_lr=0.0001)

14. 学习率调度程序:通过自定义函数调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, lr):
    if epoch % 5 == 0:
        return lr * 0.1
    else:
        return lr

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)

15. 学习率调度程序:根据自定义条件调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(epoch, lr):
    if epoch % 5 == 0:
        if lr < 0.01:
            return lr * 0.1
        else:
            return lr
    else:
        return lr

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)

16. 学习率调度程序:根据训练步数和验证集损失调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau

def scheduler(steps, val_loss):
    if steps < 1000 or val_loss > 0.5:
        return 0.01
    else:
        return 0.001

lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='steps', factor=0.2, patience=5, min_lr=0.0001)

17. 学习率调度程序:使用余弦退火调整学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from math import pi, cos

def scheduler(epoch):
    max_epochs = 100
    max_lr = 0.01
    min_lr = 0.001
    return min_lr + 0.5 * (max_lr - min_lr) * (1 + cos(epoch * pi / max_epochs))

lr_scheduler = LearningRateScheduler(scheduler)

18. 学习率调度程序:逐渐增大再逐渐减少学习率

from tensorflow.keras.callbacks import LearningRateScheduler
from math import sin

def scheduler(epoch):
    max_epochs = 100
    max_lr = 0.01
    min_lr = 0.001
    return min_lr + 0.5 * (max_lr - min_lr) * (1 + sin(epoch * pi / max_epochs))

lr_scheduler = LearningRateScheduler(scheduler)