Python生成20个包含LearningRateScheduler的中文标题
发布时间:2023-12-11 14:05:44
1. 学习率调度程序:以指数衰减方式调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
def scheduler(epoch):
return 0.01 * pow(0.1, epoch)
lr_scheduler = LearningRateScheduler(scheduler)
2. 学习率调度程序:按奇偶周期性调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
def scheduler(epoch):
if epoch % 2 == 0:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
3. 学习率调度程序:根据训练损失调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, loss):
if loss < 0.5:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)
4. 学习率调度程序:根据验证集准确率调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, accuracy):
if accuracy > 0.9:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.2, patience=5, min_lr=0.0001)
5. 学习率调度程序:根据验证集损失调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, loss):
if loss < 0.5:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.0001)
6. 学习率调度程序:根据训练步数调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(steps):
if steps < 1000:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='steps', factor=0.2, patience=5, min_lr=0.0001)
7. 学习率调度程序:根据训练样本数量调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(samples):
if samples < 10000:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='samples', factor=0.2, patience=5, min_lr=0.0001)
8. 学习率调度程序:逐渐减少学习率
from tensorflow.keras.callbacks import LearningRateScheduler
def scheduler(epoch):
return 0.1 / (epoch + 1)
lr_scheduler = LearningRateScheduler(scheduler)
9. 学习率调度程序:逐渐增加学习率
from tensorflow.keras.callbacks import LearningRateScheduler
def scheduler(epoch):
return 0.1 * (epoch + 1)
lr_scheduler = LearningRateScheduler(scheduler)
10. 学习率调度程序:周期性调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
def scheduler(epoch):
if epoch % 5 == 0:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
11. 学习率调度程序:根据训练准确率调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, accuracy):
if accuracy > 0.9:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='accuracy', factor=0.2, patience=5, min_lr=0.0001)
12. 学习率调度程序:根据训练集损失和准确率调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, loss, accuracy):
if loss < 0.5 and accuracy > 0.9:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor=['loss', 'accuracy'], factor=0.2, patience=5, min_lr=0.0001)
13. 学习率调度程序:根据验证集损失和准确率调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, loss, accuracy):
if loss < 0.5 and accuracy > 0.9:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor=['val_loss', 'val_accuracy'], factor=0.2, patience=5, min_lr=0.0001)
14. 学习率调度程序:通过自定义函数调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, lr):
if epoch % 5 == 0:
return lr * 0.1
else:
return lr
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)
15. 学习率调度程序:根据自定义条件调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(epoch, lr):
if epoch % 5 == 0:
if lr < 0.01:
return lr * 0.1
else:
return lr
else:
return lr
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.2, patience=5, min_lr=0.0001)
16. 学习率调度程序:根据训练步数和验证集损失调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
def scheduler(steps, val_loss):
if steps < 1000 or val_loss > 0.5:
return 0.01
else:
return 0.001
lr_scheduler = LearningRateScheduler(scheduler)
reduce_lr = ReduceLROnPlateau(monitor='steps', factor=0.2, patience=5, min_lr=0.0001)
17. 学习率调度程序:使用余弦退火调整学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from math import pi, cos
def scheduler(epoch):
max_epochs = 100
max_lr = 0.01
min_lr = 0.001
return min_lr + 0.5 * (max_lr - min_lr) * (1 + cos(epoch * pi / max_epochs))
lr_scheduler = LearningRateScheduler(scheduler)
18. 学习率调度程序:逐渐增大再逐渐减少学习率
from tensorflow.keras.callbacks import LearningRateScheduler
from math import sin
def scheduler(epoch):
max_epochs = 100
max_lr = 0.01
min_lr = 0.001
return min_lr + 0.5 * (max_lr - min_lr) * (1 + sin(epoch * pi / max_epochs))
lr_scheduler = LearningRateScheduler(scheduler)
