欢迎访问宙启技术站
智能推送

快速实现SSDInceptionV2特征提取器的Python代码

发布时间:2023-12-11 06:32:03

下面给出了一个实现SSDInceptionV2特征提取器的Python代码,并提供了一个使用例子。

import tensorflow as tf
from tensorflow.contrib import slim

def conv2d(net, num_filters, kernel_size, scope):
    return slim.conv2d(net, num_filters, kernel_size, scope=scope)

def max_pool2d(net, kernel_size, scope):
    return slim.max_pool2d(net, kernel_size, scope=scope)

def inception_v2(net):
    with slim.arg_scope([slim.conv2d, slim.max_pool2d], padding='SAME', weights_initializer=tf.contrib.layers.xavier_initializer()):
        with tf.variable_scope('InceptionV2'):
            with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu):
                net = conv2d(net, 64, 7, 'conv1')
                net = max_pool2d(net, 3, 'pool1')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 128, 3, 'conv2'))
                net = max_pool2d(net, 3, 'pool2')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 192, 3, 'conv3'))
                net = max_pool2d(net, 3, 'pool3')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 256, 3, 'conv4'))
                net = max_pool2d(net, 3, 'pool4')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 512, 3, 'conv5'))
                net = max_pool2d(net, 3, 'pool5')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 512, 3, 'conv6'))
                net = max_pool2d(net, 3, 'pool6')
                net = slim.repeat(net, 2, lambda x: conv2d(x, 1024, 3, 'conv7'))
                net = slim.conv2d(net, 1024, 1, scope='conv8')
                return net

# 使用例子
input_tensor = tf.placeholder(tf.float32, [None, 224, 224, 3])
outputs = inception_v2(input_tensor)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    # 随机生成一个图像数据
    input_data = np.random.rand(1, 224, 224, 3)
    output_data = sess.run(outputs, feed_dict={input_tensor: input_data})
    print(output_data.shape)  # 输出特征图的形状

在这个例子中,我们使用TensorFlow和slim库实现了SSDInceptionV2特征提取器。在inception_v2函数中,我们按照SSDInceptionV2网络的结构使用了一系列的卷积和池化操作来提取特征。代码提供了一个使用例子,其中通过随机生成一个图像数据,并将其传入特征提取器中,最后输出特征图的形状。