使用Python编写的SSDInceptionV2特征提取器生成器
发布时间:2023-12-11 06:31:14
以下是使用Python编写的SSDInceptionV2特征提取器生成器的示例代码:
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
def SSDInceptionV2(features, num_classes):
"""
创建SSDInceptionV2特征提取器
:param features: 输入张量,形状为[batch_size, height, width, channels]
:param num_classes: 类别数量
:return: 特征张量
"""
# 定义InceptionV2的graph
with slim.arg_scope(inception_v2.inception_v2_arg_scope()):
# 获取特征
_, end_points = inception_v2.inception_v2(features, num_classes=None, is_training=False)
# 获取Mixed_4e和Mixed_5c的输出
mixed_4e_output = end_points['Mixed_4e']
mixed_5c_output = end_points['Mixed_5c']
# 添加额外的特征层
with tf.variable_scope('AdditionalLayers'):
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu):
# 添加Conv6_1层,卷积核为3x3,步长为1,输出通道数为256
conv6_1 = slim.conv2d(mixed_5c_output, 256, [3, 3], scope='conv6_1')
# 添加Conv6_2层,卷积核为3x3,步长为2,输出通道数为512
conv6_2 = slim.conv2d(conv6_1, 512, [3, 3], stride=2, scope='conv6_2')
# 添加Conv7_1层,卷积核为3x3,步长为1,输出通道数为128
conv7_1 = slim.conv2d(conv6_2, 128, [3, 3], scope='conv7_1')
# 添加Conv7_2层,卷积核为3x3,步长为2,输出通道数为256
conv7_2 = slim.conv2d(conv7_1, 256, [3, 3], stride=2, scope='conv7_2')
# 添加Conv8_1层,卷积核为3x3,步长为1,输出通道数为128
conv8_1 = slim.conv2d(conv7_2, 128, [3, 3], scope='conv8_1')
# 添加Conv8_2层,卷积核为3x3,步长为2,输出通道数为256
conv8_2 = slim.conv2d(conv8_1, 256, [3, 3], stride=2, scope='conv8_2')
# 添加Conv9_1层,卷积核为3x3,步长为1,输出通道数为128
conv9_1 = slim.conv2d(conv8_2, 128, [3, 3], scope='conv9_1')
# 添加Conv9_2层,卷积核为3x3,步长为2,输出通道数为256
conv9_2 = slim.conv2d(conv9_1, 256, [3, 3], stride=2, scope='conv9_2')
# 添加Conv10_1层,卷积核为3x3,步长为1,输出通道数为128
conv10_1 = slim.conv2d(conv9_2, 128, [3, 3], scope='conv10_1')
# 添加Conv10_2层,卷积核为3x3,步长为2,输出通道数为256
conv10_2 = slim.conv2d(conv10_1, 256, [3, 3], stride=2, scope='conv10_2')
# 将Mixed_4e的输出重塑为特征层形状
mixed_4e_reshaped = tf.reshape(mixed_4e_output, [tf.shape(mixed_4e_output)[0], -1, 512])
# 将Mixed_4e和Conv6_2的输出合并,形成新增特征层feature_layer_6
feature_layer_6 = tf.concat([mixed_4e_reshaped, conv6_2], axis=1, name='feature_layer_6')
# 将Conv7_2的输出重塑为特征层形状
conv7_2_reshaped = tf.reshape(conv7_2, [tf.shape(conv7_2)[0], -1, 256])
# 将Conv7_2和Conv8_2的输出合并,形成新增特征层feature_layer_7
feature_layer_7 = tf.concat([conv7_2_reshaped, conv8_2], axis=1, name='feature_layer_7')
# 将Conv8_2的输出重塑为特征层形状
conv8_2_reshaped = tf.reshape(conv8_2, [tf.shape(conv8_2)[0], -1, 256])
# 将Conv8_2和Conv9_2的输出合并,形成新增特征层feature_layer_8
feature_layer_8 = tf.concat([conv8_2_reshaped, conv9_2], axis=1, name='feature_layer_8')
# 将Conv9_2的输出重塑为特征层形状
conv9_2_reshaped = tf.reshape(conv9_2, [tf.shape(conv9_2)[0], -1, 256])
# 将Conv9_2和Conv10_2的输出合并,形成新增特征层feature_layer_9
feature_layer_9 = tf.concat([conv9_2_reshaped, conv10_2], axis=1, name='feature_layer_9')
# 将所有特征层合并,并重塑为形状[batch_size, total_anchors, num_classes + 4]
all_features = tf.concat([mixed_4e_reshaped, conv6_2, conv7_2, conv8_2, conv9_2, conv10_2], axis=1, name='all_features')
all_features_reshaped = tf.reshape(all_features, [tf.shape(all_features)[0], -1, num_classes + 4])
return all_features_reshaped
# 使用示例
input_features = tf.placeholder(tf.float32, [None, 300, 300, 3])
output_features = SSDInceptionV2(input_features, num_classes=10)
with tf.Session() as sess:
# 随机生成输入特征
input_data = np.random.rand(1, 300, 300, 3)
# 运行特征提取器
output_data = sess.run(output_features, feed_dict={input_features: input_data})
print(output_data.shape) # 打印输出特征的形状
这个示例代码展示了如何使用Python编写一个SSDInceptionV2特征提取器生成器。代码中的SSDInceptionV2函数用于定义特征提取器的网络结构,接受输入张量和类别数量作为参数,并返回特征张量。然后通过传入输入特征数据,可以得到输出的特征数据。
在示例中,我们定义了一个随机生成的输入特征张量,并通过sess.run方法执行了特征提取器的计算。最后打印了提取出的特征形状。
这个示例代码可以帮助你了解如何使用Python编写SSDInceptionV2特征提取器生成器,并且可以根据需要进行修改和扩展。
