欢迎访问宙启技术站
智能推送

使用Java进行数据排序的10个函数

发布时间:2023-07-06 00:46:38

1. 冒泡排序(Bubble Sort): 该算法使用嵌套循环将较大的元素逐步交换到数组的末尾。时间复杂度为O(n^2)。以下是其实现代码:

public static void bubbleSort(int[] arr) {
  int n = arr.length;
  for (int i = 0; i < n-1; i++) {
    for (int j = 0; j < n-i-1; j++) {
      if (arr[j] > arr[j+1]) {
        int temp = arr[j];
        arr[j] = arr[j+1];
        arr[j+1] = temp;
      }
    }
  }
}

2. 选择排序(Selection Sort): 该算法每次选择最小的元素并将其放置在已排序部分的末尾。时间复杂度为O(n^2)。以下是其实现代码:

public static void selectionSort(int[] arr) {
  int n = arr.length;
  for (int i = 0; i < n-1; i++) {
    int minIndex = i;
    for (int j = i+1; j < n; j++) {
      if (arr[j] < arr[minIndex]) {
        minIndex = j;
      }
    }
    int temp = arr[minIndex];
    arr[minIndex] = arr[i];
    arr[i] = temp;
  }
}

3. 插入排序(Insertion Sort): 该算法将每个元素插入到已排序序列的适当位置。时间复杂度为O(n^2)。以下是其实现代码:

public static void insertionSort(int[] arr) {
  int n = arr.length;
  for (int i = 1; i < n; i++) {
    int key = arr[i];
    int j = i-1;
    while (j >= 0 && arr[j] > key) {
      arr[j+1] = arr[j];
      j = j-1;
    }
    arr[j+1] = key;
  }
}

4. 快速排序(Quick Sort): 该算法使用分治法原则,通过选择一个基准元素将数组分成两个子数组,然后对子数组进行排序。时间复杂度平均为O(nlogn)。以下是其实现代码:

public static void quickSort(int[] arr, int low, int high) {
  if (low < high) {
    int pi = partition(arr, low, high);
    quickSort(arr, low, pi-1);
    quickSort(arr, pi+1, high);
  }
}

public static int partition(int[] arr, int low, int high) {
  int pivot = arr[high];
  int i = (low-1);
  for (int j = low; j < high; j++) {
    if (arr[j] < pivot) {
      i++;
      int temp = arr[i];
      arr[i] = arr[j];
      arr[j] = temp;
    }
  }
  int temp = arr[i+1];
  arr[i+1] = arr[high];
  arr[high] = temp;
  return i+1;
}

5. 归并排序(Merge Sort): 该算法使用分治法原则,将数组分成两半,分别对其进行排序,然后合并两个已排序的子数组。时间复杂度为O(nlogn)。以下是其实现代码:

public static void mergeSort(int[] arr, int low, int high) {
  if (low < high) {
    int mid = (low+high)/2;
    mergeSort(arr, low, mid);
    mergeSort(arr, mid+1, high);
    merge(arr, low, mid, high);
  }
}

public static void merge(int[] arr, int low, int mid, int high) {
  int n1 = mid - low + 1;
  int n2 = high - mid;
  
  int[] left = new int[n1];
  int[] right = new int[n2];
  
  for (int i = 0; i < n1; i++) {
    left[i] = arr[low+i];
  }
  for (int j = 0; j < n2; j++) {
    right[j] = arr[mid+1+j];
  }
  
  int i = 0, j = 0, k = low;
  while (i < n1 && j < n2) {
    if (left[i] <= right[j]) {
      arr[k] = left[i];
      i++;
    } else {
      arr[k] = right[j];
      j++;
    }
    k++;
  }
  
  while (i < n1) {
    arr[k] = left[i];
    i++;
    k++;
  }
  
  while (j < n2) {
    arr[k] = right[j];
    j++;
    k++;
  }
}

6. 堆排序(Heap Sort): 该算法使用二叉堆数据结构,通过反复将最大元素从堆顶移除,并将其放置在数组的末尾来排序。时间复杂度为O(nlogn)。以下是其实现代码:

public static void heapSort(int[] arr) {
  int n = arr.length;
  for (int i = n/2-1; i >= 0; i--) {
    heapify(arr, n, i);
  }
  for (int i = n-1; i >= 0; i--) {
    int temp = arr[0];
    arr[0] = arr[i];
    arr[i] = temp;
    heapify(arr, i, 0);
  }
}

public static void heapify(int[] arr, int n, int i) {
  int largest = i;
  int left = 2*i + 1;
  int right = 2*i + 2;
  
  if (left < n && arr[left] > arr[largest]) {
    largest = left;
  }
  if (right < n && arr[right] > arr[largest]) {
    largest = right;
  }
  
  if (largest != i) {
    int temp = arr[i];
    arr[i] = arr[largest];
    arr[largest] = temp;
    heapify(arr, n, largest);
  }
}

7. 计数排序(Counting Sort): 该算法通过确定一个元素在整个序列中的位置来排序,适用于非负整数。时间复杂度为O(n+k),其中k是整数范围。以下是其实现代码:

public static void countingSort(int[] arr) {
  int n = arr.length;
  int max = Arrays.stream(arr).max().getAsInt();
  int min = Arrays.stream(arr).min().getAsInt();
  int range = max - min + 1;
  
  int[] count = new int[range];
  int[] output = new int[n];
  
  for (int i = 0; i < n; i++) {
    count[arr[i]-min]++;
  }
  
  for (int i = 1; i < range; i++) {
    count[i] += count[i-1];
  }
  
  for (int i = n-1; i >= 0; i--) {
    output[count[arr[i]-min]-1] = arr[i];
    count[arr[i]-min]--;
  }
  
  for (int i = 0; i < n; i++) {
    arr[i] = output[i];
  }
}

8. 基数排序(Radix Sort): 该算法按照元素的位数进行排序,从最低有效位到最高有效位。时间复杂度为O(nk),其中k是元素的最大位数。以下是其实现代码:

`java

public static void radixSort(int[] arr) {

int max = Arrays.stream(arr).max().getAsInt();

for (int exp = 1; max/exp > 0; exp *= 10) {

countingSort(arr, exp);

}

}

public static void countingSort(int[] arr, int exp) {

int n = arr.length;

int[] output = new int[n];

int[] count = new int[10];

for (int i = 0; i < n; i++) {

count[(arr[i]/exp)%10]++;

}

for (int i = 1; i < 10; i++) {

count[i] += count[i-1];

}

for (int i = n-1; i >= 0; i--) {

output[count[(arr[i]/exp)%10]-1] = arr[i];

count[(arr[i]/exp)%10]--;

}