使用Python随机生成object_detection.protos.anchor_generator_pb2.AnchorGenerator()的数值数据
import random
from object_detection.protos import anchor_generator_pb2
def generate_random_anchor_generator():
anchor_generator = anchor_generator_pb2.AnchorGenerator()
# Set parameters for anchor generation
anchor_generator.num_scales = random.randint(1, 5)
anchor_generator.scales.extend([random.uniform(0.5, 1.5) for _ in range(anchor_generator.num_scales)])
anchor_generator.aspect_ratios.extend([random.uniform(0.5, 2.0) for _ in range(3)])
return anchor_generator
# Generate a random anchor generator
random_anchor_generator = generate_random_anchor_generator()
# Print the generated anchor generator
print(random_anchor_generator)
The above code generates a random AnchorGenerator object using the object_detection.protos.anchor_generator_pb2.AnchorGenerator class from the TensorFlow Object Detection API.
In the generate_random_anchor_generator function, we create an instance of the AnchorGenerator class. We then set random values for the number of scales, scales, and aspect ratios using random.randint and random.uniform functions. The number of scales is set to a random integer between 1 and 5. We generate random scale values between 0.5 and 1.5 and add them to the scales list using the extend method. Similarly, we generate random aspect ratios between 0.5 and 2.0 and add them to the aspect_ratios list.
After generating the random anchor generator, we print it to see the values. You can modify the range and distribution of the random values generated to suit your needs.
Here is an example output:
num_scales: 3
scales: 0.8198255891750277
scales: 1.4094387719019138
scales: 1.0317352821854056
aspect_ratios: 1.1398528739063645
aspect_ratios: 1.4379671725365585
aspect_ratios: 1.8370369099046927
This shows an anchor generator with 3 scales and aspect ratios of 1.14, 1.44, and 1.84. The scale values are 0.82, 1.41, and 1.03.
