Python中使用sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis进行二次判别分析的步骤
发布时间:2024-01-20 04:24:58
在Python中,可以使用scikit-learn库中的sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis类来进行二次判别分析(Quadratic Discriminant Analysis,QDA)。QDA是一种经典的模式分类方法,假设各个类别的协方差矩阵不相等。
下面是使用QuadraticDiscriminantAnalysis的步骤和示例代码:
1. 导入所需的库:
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score
2. 准备数据集:
# 加载鸢尾花数据集 data = load_iris() X = data.data y = data.target
3. 拆分训练集和测试集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
4. 创建分类器模型:
qda = QuadraticDiscriminantAnalysis()
5. 拟合训练数据:
qda.fit(X_train, y_train)
6. 对测试集进行预测:
y_pred = qda.predict(X_test)
7. 计算准确率:
accuracy = accuracy_score(y_test, y_pred)
print(f"Testing Accuracy: {accuracy}")
完整的示例代码如下:
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
data = load_iris()
X = data.data
y = data.target
# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建分类器模型
qda = QuadraticDiscriminantAnalysis()
# 拟合训练数据
qda.fit(X_train, y_train)
# 对测试集进行预测
y_pred = qda.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Testing Accuracy: {accuracy}")
以上为使用QuadraticDiscriminantAnalysis进行二次判别分析的步骤和示例代码。通过以上步骤,可以训练QDA模型,并对新的数据样本进行分类预测。
