欢迎访问宙启技术站
智能推送

Python中使用sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis进行二次判别分析的步骤

发布时间:2024-01-20 04:24:58

在Python中,可以使用scikit-learn库中的sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis类来进行二次判别分析(Quadratic Discriminant Analysis,QDA)。QDA是一种经典的模式分类方法,假设各个类别的协方差矩阵不相等。

下面是使用QuadraticDiscriminantAnalysis的步骤和示例代码:

1. 导入所需的库:

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

2. 准备数据集:

# 加载鸢尾花数据集
data = load_iris()
X = data.data
y = data.target

3. 拆分训练集和测试集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4. 创建分类器模型:

qda = QuadraticDiscriminantAnalysis()

5. 拟合训练数据:

qda.fit(X_train, y_train)

6. 对测试集进行预测:

y_pred = qda.predict(X_test)

7. 计算准确率:

accuracy = accuracy_score(y_test, y_pred)
print(f"Testing Accuracy: {accuracy}")

完整的示例代码如下:

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
data = load_iris()
X = data.data
y = data.target

# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建分类器模型
qda = QuadraticDiscriminantAnalysis()

# 拟合训练数据
qda.fit(X_train, y_train)

# 对测试集进行预测
y_pred = qda.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Testing Accuracy: {accuracy}")

以上为使用QuadraticDiscriminantAnalysis进行二次判别分析的步骤和示例代码。通过以上步骤,可以训练QDA模型,并对新的数据样本进行分类预测。