使用ray.tune函数实现分布式训练
发布时间:2024-01-19 19:47:52
Ray Tune是一个用于调优机器学习模型的分布式调参库,可以很方便地在分布式环境中运行并发地进行参数搜索和调优。以下是使用Ray Tune函数实现分布式训练的示例:
首先,需要导入所需的库:
import ray from ray import tune from ray.tune.examples.mnist_pytorch import train, test, get_data_loaders, ConvNet
接下来,需要定义训练和测试函数。在此示例中,我们使用了PyTorch框架进行训练和测试。
def train_mnist(config):
train_loader, test_loader = get_data_loaders()
model = ConvNet()
for epoch in range(config["epochs"]):
for batch_idx, (data, target) in enumerate(train_loader):
model.optimizer.zero_grad()
output = model(data)
loss = model.loss(output, target)
loss.backward()
model.optimizer.step()
def test_mnist(config):
_, test_loader = get_data_loaders()
model = ConvNet()
accuracy = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
accuracy += pred.eq(target.view_as(pred)).sum().item()
accuracy /= len(test_loader.dataset)
tune.report(accuracy=accuracy)
然后,需要定义搜索空间和参数配置:
config = {
"lr": tune.loguniform(0.001, 0.1),
"batch_size": tune.choice([16, 32, 64, 128]),
"epochs": tune.choice([10, 20, 30])
}
最后,在main函数中,使用ray.tune.run函数来运行并发的训练和调参过程:
def main():
ray.init()
analysis = tune.run(
train_mnist,
name="mnist_tune",
config=config,
resources_per_trial={"cpu": 2, "gpu": 0.5},
num_samples=10,
scheduler=tune.schedulers.PopulationBasedTraining(
time_attr="training_iteration",
reward_attr="accuracy",
perturbation_interval=5,
hyperparam_mutations={
"lr": tune.loguniform(0.0001, 0.1),
"batch_size": [16, 32, 64, 128],
"epochs": [10, 20, 30]
}
)
)
best_trail = analysis.get_best_trial("accuracy")
best_config = best_trial.config
print("Best accuracy found: ", best_trial.last_result)
print("Best configuration: ", best_config)
在上述示例中,我们使用了PopulationBasedTraining调度器来进行分布式调参。该调度器根据先前试验的结果,定期对参数进行变异和精英选择,以进一步优化模型的性能。
使用Ray Tune能够更高效地进行参数搜索和调优,以帮助找到 模型配置并提高模型性能。
