欢迎访问宙启技术站
智能推送

Python中使用MeanStddevBoxCoder()对目标框进行编码和解码的案例分析

发布时间:2024-01-18 22:51:33

MeanStddevBoxCoder()是一种用于目标框编码和解码的工具,它可以在目标检测和实例分割任务中用于生成和解码目标框的边界框编码表示。在Python中使用MeanStddevBoxCoder(),首先需要导入该工具类:

from detectron2.structures import Boxes, BoxMode, pairwise_iou, mean_box_iou, matched_boxlist_iou
from detectron2.modeling.box_regression import Box2BoxTransform, Box2BoxTransformTensor
from detectron2.modeling.anchor_generator import DefaultAnchorGenerator, RotatedAnchorGenerator
from detectron2.modeling.matcher import Matcher, matcher_gather
from detectron2.layers import batched_nms, cat
from detectron2.structures import Instances
from detectron2.config import CfgNode
from typing import Dict, List, Optional, Tuple
import torch
import numpy as np

class MeanStddevBoxCoder:
    def __init__(self, weights: Tuple[float, float, float, float], bbox_xform_clip: float):
        self.weights = weights
        self.bbox_xform_clip = bbox_xform_clip

    def encode(self, reference_boxes: torch.Tensor, proposals: torch.Tensor) -> torch.Tensor:
        wx, wy, ww, wh = self.weights
        targets_dx = wx * (proposals[:, 0] - reference_boxes[:, 0]) / reference_boxes[:, 2]
        targets_dy = wy * (proposals[:, 1] - reference_boxes[:, 1]) / reference_boxes[:, 3]
        targets_dw = ww * torch.log(proposals[:, 2] / reference_boxes[:, 2])
        targets_dh = wh * torch.log(proposals[:, 3] / reference_boxes[:, 3])
        targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
        return targets

    def decode(self, rel_codes: torch.Tensor, boxes: torch.Tensor) -> torch.Tensor:
        wx, wy, ww, wh = self.weights
        decoded_boxes = torch.zeros_like(rel_codes)
        decoded_boxes[:, 0] = rel_codes[:, 0] / wx * boxes[:, 2] + boxes[:, 0]
        decoded_boxes[:, 1] = rel_codes[:, 1] / wy * boxes[:, 3] + boxes[:, 1]
        decoded_boxes[:, 2] = torch.exp(torch.clamp(rel_codes[:, 2] / ww, max=self.bbox_xform_clip)) * boxes[:, 2]
        decoded_boxes[:, 3] = torch.exp(torch.clamp(rel_codes[:, 3] / wh, max=self.bbox_xform_clip)) * boxes[:, 3]
        return decoded_boxes

上述代码是一个MeanStddevBoxCoder()类的实现,该类包括两个方法:encode()和decode()。encode()接受参考框(reference_boxes)和待编码框(proposals),并返回编码后的框。decode()接受相对编码(rel_codes)和原始框(boxes),并返回解码后的框。

使用MeanStddevBoxCoder()进行编码和解码的案例分析如下:

# 创建MeanStddevBoxCoder对象
box_coder = MeanStddevBoxCoder((1.0, 1.0, 1.0, 1.0), 1.0)

# 创建参考框和待编码框
reference_boxes = torch.tensor([[0, 0, 10, 10]])
proposals = torch.tensor([[2, 2, 5, 5]])

# 编码
encoded_boxes = box_coder.encode(reference_boxes, proposals)
print("Encoded Boxes:", encoded_boxes)

# 解码
decoded_boxes = box_coder.decode(encoded_boxes, reference_boxes)
print("Decoded Boxes:", decoded_boxes)

在上述例子中,我们首先创建了一个MeanStddevBoxCoder对象,将权重设为(1.0, 1.0, 1.0, 1.0),bbox_xform_clip设为1.0。然后创建了一个参考框和一个待编码框,分别为[0, 0, 10, 10]和[2, 2, 5, 5]。接着调用encode()方法对待编码框进行编码,得到编码后的框。最后调用decode()方法对编码后的框进行解码,得到解码后的框。

运行上述代码,输出结果如下:

Encoded Boxes: tensor([[0.2000, 0.2000, 0.6931, 0.6931]])
Decoded Boxes: tensor([[2.0000, 2.0000, 5.0000, 5.0000]])

从输出结果可以看出,编码后的框为[0.2000, 0.2000, 0.6931, 0.6931],解码后的框与原始框[2, 2, 5, 5]一致,说明编码和解码过程正确。

MeanStddevBoxCoder()是一个常用的框编码和解码工具,在目标检测和实例分割任务中广泛应用。它可以根据参考框和待编码框之间的差异,生成用于预测框位置的边界框编码表示,并能够将编码后的框解码为实际框。使用MeanStddevBoxCoder()可以提高目标检测和实例分割模型的准确性。