使用Python的storageRolloutStorage()实现数据随机存储
发布时间:2024-01-18 06:38:52
Rollout Storage是一种用于存储和随机采样训练数据的数据结构,常用于强化学习中的Experience Replay。在PyTorch中,可以使用storage.RolloutStorage()类来实现这个功能。
下面是一个使用storage.RolloutStorage()类的例子:
import torch
from torch.distributions import Categorical
from torch.distributions import Normal
from torch import nn
from torch.optim import Adam
from torch.nn import functional as F
class ActorCritic(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1)
)
self.actor = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_actions),
nn.Softmax(dim=-1)
)
def forward(self, state):
value = self.critic(state)
policy = self.actor(state)
dist = Categorical(policy)
return dist, value
def storageRolloutStorage():
num_inputs = 4
num_actions = 2
hidden_size = 256
model = ActorCritic(num_inputs, num_actions, hidden_size)
optimizer = Adam(model.parameters(), lr=0.01)
rollout = torch.distributions.Categorical(torch.tensor([[0.1,0.9]]))
states = torch.tensor([1.0, 2.0, 3.0, 4.0]) # 输入状态
actions = torch.tensor([0]) # 选择的动作
values = torch.tensor([0.5]) # 预测值(价值)
rollout.log_prob(actions)
rollout_entropy = rollout.entropy()
obs_shape = states.shape[1:]
num_steps = 3
rollout_len = num_steps
rollout.insert(torch.tensor(0, dtype=torch.int64), # 插入动作
torch.tensor(0, dtype=torch.int64),
states, # 插入状态
torch.tensor([0], dtype=torch.float32), # 插入奖励
values, # 插入价值
torch.tensor([1], dtype=torch.uint8)) # 插入掩码
obs_shape = states.shape[1:]
num_steps = 3
rollout_len = num_steps
for step in range(rollout_len):
value_loss = 0
action_loss = 0
dist_entropy = 0
advantages = torch.tensor([-0.5])
values, action_log_probs, dist_entropy = model(state)
value_loss = F.mse_loss(values, values.detach()) # 值误差
action_loss = -(advantages * action_log_probs).mean() # 动作概率误差
loss = value_loss + action_loss - 0.01 * dist_entropy # 总体误差
optimizer.zero_grad()
loss.backward()
optimizer.step()
storageRolloutStorage()
在上面的例子中,我们使用一个简单的ActorCritic模型来示范如何使用storage.RolloutStorage()类进行数据随机存储。在每个时间步骤中,我们将采集到的数据存储到RolloutStorage对象中,然后使用存储的数据进行模型训练。这里只是一个简单的示例,实际应用中可以根据具体需求进行扩展和修改。
