欢迎访问宙启技术站
智能推送

TensorBoardX教程:使用PyTorch和TensorBoardX进行实时可视化

发布时间:2024-01-16 06:31:51

TensorBoardX是一个用于可视化PyTorch模型训练过程的工具,它是对TensorBoard库的封装。TensorBoard是TensorFlow中用于可视化和分析神经网络训练过程的一个功能强大的工具。TensorBoardX基本上相当于是对TensorBoard在PyTorch上的一个移植版本。

首先,我们需要在终端安装TensorBoardX库,可以使用以下命令进行安装:

pip install tensorboardX

然后,我们需要导入必要的库:

import torch
import torchvision
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter

接下来,我们需要定义一个PyTorch模型,并准备数据。这里我们使用MNIST数据集作为例子:

# 定义模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 6, 5)
        self.pool = torch.nn.MaxPool2d(2, 2)
        self.conv2 = torch.nn.Conv2d(6, 16, 5)
        self.fc1 = torch.nn.Linear(16 * 4 * 4, 120)
        self.fc2 = torch.nn.Linear(120, 84)
        self.fc3 = torch.nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 加载数据
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,), (0.5,))])

trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                      download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.MNIST(root='./data', train=False,
                                     download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')

我们需要为模型定义一个损失函数和优化器,以及一个函数用于计算准确率:

import torch.optim as optim

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

def accuracy(outputs, labels):
    _, predicted = torch.max(outputs, 1)
    correct = (predicted == labels).sum().item()
    total = labels.size(0)
    return correct / total

在每个训练迭代中,我们计算并记录模型的loss和准确率等指标,并将其写入到SummaryWriter中:

# 创建SummaryWriter对象
writer = SummaryWriter()

for epoch in range(10):  # 在整个数据集上训练10个epoch
    running_loss = 0.0
    running_acc = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        # 梯度清零
        optimizer.zero_grad()

        # 前向传播
        outputs = net(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        loss.backward()
        optimizer.step()

        # 统计训练指标
        running_loss += loss.item()
        running_acc += accuracy(outputs, labels)

        # 保存训练指标到SummaryWriter
        step = epoch * len(trainloader) + i
        writer.add_scalar('training loss', running_loss / 2000, step)
        writer.add_scalar('training accuracy', running_acc / 2000, step)

        running_loss = 0.0
        running_acc = 0.0

print('Finished Training')

# 关闭SummaryWriter
writer.close()

最后,在终端中使用以下命令启动TensorBoard服务器:

tensorboard --logdir=runs

然后,在浏览器中打开指定的URL(通常是localhost:6006)即可看到训练过程的可视化结果。

TensorBoardX提供了丰富的可视化功能,包括标量和直方图的可视化、模型结构图的可视化、嵌入向量的可视化等等。通过在训练过程中记录并保存各种指标和数据,我们可以更好地理解和分析模型的训练过程,帮助我们优化模型的性能。