欢迎访问宙启技术站
智能推送

在Python中使用Nets.vgg训练自定义vgg_a()模型进行语义分割

发布时间:2024-01-15 14:47:47

在Python中使用Nets.vgg训练自定义vgg_a()模型进行语义分割,下面是具体步骤和使用例子:

1.安装必要的库

在开始之前,首先确保已经安装了Python和一些必要的库,如numpy、tensorflow等。可以使用以下命令安装需要的库:

pip install numpy tensorflow

2.导入需要的库和模块

import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate, Input

3.定义vgg_a()模型

def vgg_a(input_shape):
    inputs = Input(shape = input_shape)
    
    #       部分
    conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
    conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    
    # 第二部分
    conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    
    # 第三部分
    conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3)
    conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    
    # 第四部分
    conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv4)
    conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
    
    # 第五部分
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)
    pool5 = MaxPooling2D(pool_size=(2, 2))(conv5)
    
    # 第六部分
    fc6 = Conv2D(1024, (7, 7), activation='relu', padding='same')(pool5)
    fc6 = Dropout(0.5)(fc6)
    
    # 第七部分
    fc7 = Conv2D(1024, (1, 1), activation='relu', padding='same')(fc6)
    fc7 = Dropout(0.5)(fc7)
    
    # 第八部分
    up8 = Conv2D(512, (1, 1), activation='relu', padding='same')(fc7)
    up8 = UpSampling2D((2, 2))(up8)
    merge8 = concatenate([conv5, up8], axis=3)
    conv8 = Conv2D(512, (3, 3), activation='relu', padding='same')(merge8)
    conv8 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv8)
    conv8 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv8)
    
    # 第九部分
    up9 = Conv2D(256, (1, 1), activation='relu', padding='same')(conv8)
    up9 = UpSampling2D((2, 2))(up9)
    merge9 = concatenate([conv4, up9], axis=3)
    conv9 = Conv2D(256, (3, 3), activation='relu', padding='same')(merge9)
    conv9 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv9)
    conv9 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv9)
    
    # 第十部分
    up10 = Conv2D(128, (1, 1), activation='relu', padding='same')(conv9)
    up10 = UpSampling2D((2, 2))(up10)
    merge10 = concatenate([conv2, up10], axis=3)
    conv10 = Conv2D(128, (3, 3), activation='relu', padding='same')(merge10)
    conv10 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv10)
    
    # 第十一部分
    up11 = Conv2D(64, (1, 1), activation='relu', padding='same')(conv10)
    up11 = UpSampling2D((2, 2))(up11)
    merge11 = concatenate([conv1, up11], axis=3)
    conv11 = Conv2D(64, (3, 3), activation='relu', padding='same')(merge11)
    conv11 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv11)
    
    # 输出层
    output = Conv2D(1, (1, 1), activation='sigmoid')(conv11)
    
    model = Model(inputs=inputs, outputs=output)
    
    return model

4.准备数据

准备输入数据和对应的标签数据用于训练模型。输入数据是图像,标签数据是对应的语义分割结果。

5.编译和训练模型

model = vgg_a((256, 256, 3))
model.compile(optimizer='adam', loss='binary_crossentropy')

# 输入数据和对应的标签数据
x_train = ...
y_train = ...

model.fit(x_train, y_train, epochs=10, batch_size=16)

6.使用模型进行预测

# 输入数据
x_test = ...

# 进行预测
y_pred = model.predict(x_test)

# 对预测结果进行后处理,如阈值化或使用其他方法
y_pred_processed = ...

# 可视化预测结果
import matplotlib.pyplot as plt
plt.imshow(y_pred_processed)
plt.show()

以上是使用Nets.vgg训练自定义vgg_a()模型进行语义分割的步骤和使用例子。请根据具体情况调整输入数据的大小和通道数,并根据需求调整网络结构和训练参数。