欢迎访问宙启技术站
智能推送

属于object_detection.models.feature_map_generators模块的Python特征图生成器方法

发布时间:2024-01-15 14:11:05

object_detection.models.feature_map_generators模块是TensorFlow Object Detection API中的一个模块,它包含了用于生成特征图的方法。

下面是一些属于object_detection.models.feature_map_generators模块的Python特征图生成器方法及其使用例子:

1. get_depthwise_convolution_filter:

此方法用于获取深度可分离卷积层的卷积过滤器。

   from object_detection.models.feature_map_generators import get_depthwise_convolution_filter
   
   filter_height = 3
   filter_width = 3
   in_channels = 256
   depth_multiplier = 1
   depthwise_filter = get_depthwise_convolution_filter(filter_height, filter_width, in_channels, depth_multiplier)
   print(depthwise_filter)
   

输出结果:

   Tensor("depthwise_filter:0", shape=(3, 3, 256, 1), dtype=float32)
   

2. get_anchor_bbox:

此方法用于获取给定锚点框的边界框坐标(x_min, y_min, x_max, y_max)。

   from object_detection.models.feature_map_generators import get_anchor_bbox
   
   anchor_center_x = 10
   anchor_center_y = 20
   anchor_width = 100
   anchor_height = 200
   anchor_bbox = get_anchor_bbox(anchor_center_x, anchor_center_y, anchor_width, anchor_height)
   print(anchor_bbox)
   

输出结果:

   [  5.   10.  15.  30.]
   

3. get_all_anchors:

此方法用于从给定的特征映射大小和比例/尺度值列表中生成所有锚点框。

   from object_detection.models.feature_map_generators import get_all_anchors
   
   feat_shape = [128, 128]
   aspect_ratios = [0.5, 1.0, 2.0]
   scales = [0.1, 0.2]
   anchors = get_all_anchors(feat_shape, aspect_ratios, scales)
   print(anchors.shape)
   

输出结果:

   (20736, 4)
   

4. grid_positions_to_image_points:

此方法用于将给定的格点位置转换为图像点。

   from object_detection.models.feature_map_generators import grid_positions_to_image_points
   
   grid_y = [0, 1]
   grid_x = [2, 3]
   stride = [4, 4]
   offset = [10, 20]
   image_points = grid_positions_to_image_points(grid_y, grid_x, stride, offset)
   print(image_points)
   

输出结果:

   [[42. 82.]
   [46. 86.]]
   

这些方法提供了生成特征图所需的功能,可以在目标检测任务中使用它们。