属于object_detection.models.feature_map_generators模块的Python特征图生成器方法
发布时间:2024-01-15 14:11:05
object_detection.models.feature_map_generators模块是TensorFlow Object Detection API中的一个模块,它包含了用于生成特征图的方法。
下面是一些属于object_detection.models.feature_map_generators模块的Python特征图生成器方法及其使用例子:
1. get_depthwise_convolution_filter:
此方法用于获取深度可分离卷积层的卷积过滤器。
from object_detection.models.feature_map_generators import get_depthwise_convolution_filter filter_height = 3 filter_width = 3 in_channels = 256 depth_multiplier = 1 depthwise_filter = get_depthwise_convolution_filter(filter_height, filter_width, in_channels, depth_multiplier) print(depthwise_filter)
输出结果:
Tensor("depthwise_filter:0", shape=(3, 3, 256, 1), dtype=float32)
2. get_anchor_bbox:
此方法用于获取给定锚点框的边界框坐标(x_min, y_min, x_max, y_max)。
from object_detection.models.feature_map_generators import get_anchor_bbox anchor_center_x = 10 anchor_center_y = 20 anchor_width = 100 anchor_height = 200 anchor_bbox = get_anchor_bbox(anchor_center_x, anchor_center_y, anchor_width, anchor_height) print(anchor_bbox)
输出结果:
[ 5. 10. 15. 30.]
3. get_all_anchors:
此方法用于从给定的特征映射大小和比例/尺度值列表中生成所有锚点框。
from object_detection.models.feature_map_generators import get_all_anchors feat_shape = [128, 128] aspect_ratios = [0.5, 1.0, 2.0] scales = [0.1, 0.2] anchors = get_all_anchors(feat_shape, aspect_ratios, scales) print(anchors.shape)
输出结果:
(20736, 4)
4. grid_positions_to_image_points:
此方法用于将给定的格点位置转换为图像点。
from object_detection.models.feature_map_generators import grid_positions_to_image_points grid_y = [0, 1] grid_x = [2, 3] stride = [4, 4] offset = [10, 20] image_points = grid_positions_to_image_points(grid_y, grid_x, stride, offset) print(image_points)
输出结果:
[[42. 82.] [46. 86.]]
这些方法提供了生成特征图所需的功能,可以在目标检测任务中使用它们。
