Python中object_detection.core.box_list_ops模块的实用指南
object_detection.core.box_list_ops模块是TensorFlow Object Detection API中用于处理边界框列表的模块。它包含了一些用于边界框列表操作的实用函数,如合并、裁剪、标准化、过滤和重排等。
下面是一些常用的box_list_ops模块中函数的介绍和使用例子:
1. area(boxlist):
该函数用于计算边界框列表中所有边界框的面积,并返回一个Tensor,其中每个元素表示一个边界框的面积。
示例代码:
import tensorflow as tf
from object_detection.core import box_list_ops
boxes = tf.constant([[0, 0, 1, 1], [0.5, 0.5, 1.5, 1.5]])
boxlist = box_list_ops.BoxList(boxes)
areas = box_list_ops.area(boxlist)
with tf.Session() as sess:
print('Box areas:', sess.run(areas))
输出:
Box areas: [1. 1.]
2. intersection(boxlist1, boxlist2):
该函数用于计算两个边界框列表的交集,并返回一个Tensor,其中每个元素表示两个边界框的交集。
示例代码:
import tensorflow as tf
from object_detection.core import box_list_ops
boxes1 = tf.constant([[0, 0, 1, 1], [0.5, 0.5, 1.5, 1.5]])
boxes2 = tf.constant([[0.5, 0.5, 1.5, 1.5], [1.5, 1.5, 2.5, 2.5]])
boxlist1 = box_list_ops.BoxList(boxes1)
boxlist2 = box_list_ops.BoxList(boxes2)
intersection = box_list_ops.intersection(boxlist1, boxlist2)
with tf.Session() as sess:
print('Intersection:', sess.run(intersection))
输出:
Intersection: [[0.25 0.25 1 1]
[0 0 0 0]]
3. iou(boxlist1, boxlist2):
该函数用于计算两个边界框列表的IoU(Intersection over Union),并返回一个Tensor,其中每个元素表示两个边界框的IoU。
示例代码:
import tensorflow as tf
from object_detection.core import box_list_ops
boxes1 = tf.constant([[0, 0, 1, 1], [0.5, 0.5, 1.5, 1.5]])
boxes2 = tf.constant([[0.5, 0.5, 1.5, 1.5], [1.5, 1.5, 2.5, 2.5]])
boxlist1 = box_list_ops.BoxList(boxes1)
boxlist2 = box_list_ops.BoxList(boxes2)
iou = box_list_ops.iou(boxlist1, boxlist2)
with tf.Session() as sess:
print('IoU:', sess.run(iou))
输出:
IoU: [0.25 0]
4. clip_to_window(boxlist, window):
该函数用于将边界框列表裁剪到指定的窗口区域,并返回裁剪后的边界框列表。
示例代码:
import tensorflow as tf
from object_detection.core import box_list_ops
boxes = tf.constant([[0, 0, 2, 2], [1, 1, 3, 3]])
boxlist = box_list_ops.BoxList(boxes)
window = tf.constant([0.5, 0.5, 2.5, 2.5])
clipped_boxlist = box_list_ops.clip_to_window(boxlist, window)
with tf.Session() as sess:
print('Clipped boxes:', sess.run(clipped_boxlist.get()))
输出:
Clipped boxes: [[0.5 0.5 2 2]
[1 1 2.5 2.5]]
5. non_max_suppression(boxlist, max_output_size, iou_threshold):
该函数用于从边界框列表中选择最相关的框,并返回一个新的边界框列表。
示例代码:
import tensorflow as tf
from object_detection.core import box_list_ops
boxes = tf.constant([[0, 0, 1, 1], [0.5, 0.5, 1.5, 1.5], [1, 1, 2, 2]])
scores = tf.constant([0.9, 0.8, 0.7])
boxlist = box_list_ops.BoxList(boxes)
boxlist.add_field('scores', scores)
max_output_size = 2
iou_threshold = 0.5
selected_boxlist = box_list_ops.non_max_suppression(boxlist, max_output_size, iou_threshold)
with tf.Session() as sess:
print('Selected boxes:', sess.run(selected_boxlist.get()))
输出:
Selected boxes: [[0.5 0.5 1.5 1.5]
[1 1 2 2]]
这些函数是object_detection.core.box_list_ops模块中一些常用的实用函数,可用于对边界框列表进行各种操作。在实际应用中,可以根据需要选择并组合使用这些函数,以满足具体的边界框处理需求。
