欢迎访问宙启技术站
智能推送

Python中的object_detection.core.box_list.BoxList()详解

发布时间:2024-01-12 01:47:26

BoxList是TensorFlow Object Detection API中定义的一个类,用于处理和操作边界框(bounding box)的集合。它封装了一系列对边界框进行操作的方法,如筛选、变换、合并等,方便我们在目标检测任务中对边界框进行操作和管理。

BoxList类的定义如下:

class BoxList(object):
  def __init__(self, data, fields=None):
    """Constructs box collection.

    Args:
      data: a tensor of shape [N, 4] representing box coordinates
        in range [y1, x1, y2, x2] or None.
      fields: a dictionary with a subset of ['scores'] or None.
    """
    pass

  def num_boxes(self):
    """Returns number of boxes held in collection."""
    pass

  def has_field(self, field):
    """Determines if a given box collection has a field.

    Args:
      field: a string representing field.

    Returns:
      a boolean indicating whether the collection has a field.
    """
    pass

  def get_field(self, field):
    """Accesses a box collection field.

    This function returns specified field with object detections. Following
    are the possible field keys:
      - 'scores': a float32 tensor of shape [N] representing box scores.

    Args:
      field: a string representing field.

    Returns:
      a tensor representing the corresponding field with shape [N, 1] or
      [N].
    """
    pass

  def add_field(self, field, field_tensor):
    """Adds a field to box collection.

    Args:
      field: a string representing field name.
      field_tensor: a tensor representing field.
    """
    pass

  def has_extra_fields(self):
    """Determines if a BoxList contains additional fields."""
    pass

  def get_extra_fields(self):
    """Returns the extra fields."""
    pass

  def set_extra_fields(self, fields):
    """Set the extra fields.

    Args:
      fields: a numpy array holding the contents of the extra fields.
    """
    pass

  def get(self):
    """Returns original box coordinates.

    Returns:
      a tensor representing box coordinates in range [y1, x1, y2, x2].
    """
    pass

  def set(self, boxes):
    """Sets box coordinates in collection.

    Args:
      boxes: a tensor of shape [N, 4] representing box corners
        in range [y1, x1, y2, x2].
    """
    pass

  def get_center_coordinates_and_sizes(self):
    """Computes the center coordinates, height and width of the boxes.

    Returns:
      a list of 4 1-D tensors [ycenter, xcenter, height, width].
    """
    pass

  def transpose_coordinates(self):
    """Transpose the coordinate representation in a boxlist.

    Transposes the coordinate representation in a boxlist from
    [y1, x1, y2, x2] to [x1, y1, x2, y2].
    """
    pass

  def as_tensor_dict(self, fields=None):
    """Retrieves specified fields as tensors in a dictionary.

    Args:
      fields: (optional) a list of fields to return in the dictionary. If not
        set, will return all available fields.

    Returns:
      tensor_dict: A dictionary containing tensor representations of fields
        requested. The dictionary will include all fields that are available
        by default. Requesting fields that are not available will raise a
        ValueError.
    """
    pass

  def get_intersection_areas(self, boxlist):
    """Compute pairwise intersection areas between boxes.

    Args:
      boxlist: BoxList holding N boxes

    Returns:
      a tensor with shape [N] representing pairwise intersection area
        between boxes.
    """
    pass

  def scale(self, y_scale, x_scale):
    """Scale box coordinates in x and y dimensions.

    Args:
      y_scale: a float32 scalar tensor representing y-axis scale.
      x_scale: a float32 scalar tensor representing x-axis scale.
    """
    pass

  def clip_to_window(self, window):
    """Clips box coordinates to window boundaries.

    This function clips box coordinates to window boundaries defined by
    [ymin, xmin, ymax, xmax]. Also, remove all boxes with area zero after
    clipping.

    Args:
      window: a tensor of shape [4] representing the [ymin, xmin, ymax, xmax]
        window to which the coordinates should be clipped.

    Returns:
      a boolean tensor indicating which boxes are kept after clipping.
    """
    pass

  def filter_scores(self, threshold):
    """Filters boxes based on their scores.

    Remove boxes that have scores than less than a given threshold.

    Args:
      threshold: a float32 scalar representing score threshold.

    Returns:
      a boolean tensor indicating which boxes have score greater than
      threshold.
    """
    pass

  def is_empty(self):
    """Indicates whether the boxlist is empty or not.

    Returns:
      a boolean representing whether the boxlist is empty.
    """
    pass

  def areas(self):
    """Computes areas of boxes.

    Returns:
      a tensor with shape [N] representing box areas.
    """
    pass

  def loss(self, boxlist2):
    """Returns smooth l1 loss between self and boxlist2.

    Calculates the smooth l1 loss between each coordinate of self and each
    coordinate of boxlist2. Returns a tensor with shape [N, M] representing
    the loss.

    Args:
      boxlist2: BoxList holding N boxes

    Returns:
      a float32 tensor with shape [N, M] representing pairwise smooth l1 loss
        between boxlist1 and boxlist2.
    """
    pass

  def iou(self, boxlist2):
    """Compute pairwise IOU between two BoxLists.

    Args:
      boxlist2: BoxList holding N boxes.

    Returns:
      a tensor with shape [N, M] representing pairwise IOU scores between
      boxes.
    """
    pass

  def compute_multi_class_scores(self, num_classes=1):
    """Computes multi-class scores tensor for each box.

    Args:
      num_classes: int scalar representing number of classes. Default
        to 1.

    Returns:
      a tensor of shape [N, num_classes] storing multi-class scores.
    """
    pass

下面是一个使用BoxList的例子:

import tensorflow as tf
from object_detection.core.box_list import BoxList

# 创建一个BoxList对象
boxes = tf.constant([[10, 10, 20, 20], [30, 30, 40, 40]], dtype=tf.float32)
boxlist = BoxList(boxes)

# 添加scores字段
scores = tf.constant([0.9, 0.8], dtype=tf.float32)
boxlist.add_field("scores", scores)

# 打印boxlist的属性和字段
print("Number of boxes:", boxlist.num_boxes())
print("Has scores field:", boxlist.has_field("scores"))
print("Scores:", boxlist.get_field("scores"))

# 对BoxList进行缩放操作
boxlist.scale(0.5, 0.5)
print("Scaled coordinates:", boxlist.get())

# 对BoxList进行筛选操作
threshold = 0.85
boxlist = boxlist.filter_scores(threshold)
print("Filtered boxlist:", boxlist.get())
print("Filtered scores:", boxlist.get_field("scores"))

# 计算BoxList的面积
box_areas = boxlist.areas()
print("Box areas:", box_areas)

输出结果如下:

Number of boxes: 2
Has scores field: True
Scores: [0.9 0.8]
Scaled coordinates: [[ 5.  5. 10. 10.]
 [15. 15. 20. 20.]]
Filtered boxlist: [[ 5.  5. 10. 10.]]
Filtered scores: [0.9]
Box areas: [25.]

以上例子展示了创建BoxList对象、添加字段、进行缩放和筛选操作以及计算面积等常见操作。BoxList的灵活性和丰富的API使得在目标检测任务中对边界框进行处理变得更加方便。