Python中的object_detection.eval_util:用于评估目标检测算法鲁棒性的实用工具
发布时间:2024-01-11 19:21:22
object_detection.eval_util是一个用于评估目标检测算法鲁棒性的实用工具模块,它提供了一些函数和类,可以帮助我们计算模型的评估指标,如平均精确度(Average Precision)和均匀平均精确度(Mean Average Precision)。
下面是object_detection.eval_util模块中一些常用函数和类的使用例子:
1. compute_precision_recall函数:用于计算真阳性(True Positive)、假阳性(False Positive)和假阴性(False Negative)之间的精确度(Precision)和召回率(Recall)。
import object_detection.eval_util as eval_util
groundtruth_boxes = [[0.0, 0.0, 0.5, 0.5]]
groundtruth_classes = [1]
detection_boxes = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0]]
detection_scores = [0.8, 0.6]
detection_classes = [1, 2]
num_gt_boxes = 1
precision, recall = eval_util.compute_precision_recall(
groundtruth_boxes, groundtruth_classes, detection_boxes, detection_scores, detection_classes, num_gt_boxes)
print('Precision:', precision)
print('Recall:', recall)
2. compute_average_precision_per_class函数:用于计算每个类别的平均精确度。
import object_detection.eval_util as eval_util
groundtruth_boxes = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0]]
groundtruth_classes = [1, 1]
detection_boxes = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0]]
detection_scores = [0.8, 0.6]
detection_classes = [1, 2]
metrics_per_class, _ = eval_util.compute_average_precision_per_class(
groundtruth_boxes, groundtruth_classes, detection_boxes, detection_scores, detection_classes)
for class_id, metrics in metrics_per_class.items():
print('Class:', class_id)
print('Average Precision:', metrics['average_precision'])
3. aggregate_stats类:用于计算模型的均匀平均精确度。
import object_detection.eval_util as eval_util
stats = eval_util.AggregateStats()
# 添加一个样本
groundtruth_boxes = [[0.0, 0.0, 0.5, 0.5]]
groundtruth_classes = [1]
detection_boxes = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0]]
detection_scores = [0.8, 0.6]
detection_classes = [1, 2]
num_gt_boxes = 1
stats.update(groundtruth_boxes, groundtruth_classes, detection_boxes, detection_scores, detection_classes, num_gt_boxes)
# 添加另一个样本
groundtruth_boxes = [[0.5, 0.5, 1.0, 1.0]]
groundtruth_classes = [2]
detection_boxes = [[0.0, 0.0, 0.5, 0.5]]
detection_scores = [0.7]
detection_classes = [2]
num_gt_boxes = 1
stats.update(groundtruth_boxes, groundtruth_classes, detection_boxes, detection_scores, detection_classes, num_gt_boxes)
mean_ap, _, _, _ = eval_util.per_image_eval(num_groundtruth_classes=2, eval_dict=stats.aggregate())
print('Mean Average Precision:', mean_ap)
这只是object_detection.eval_util模块的一小部分,还有其他功能和类可用于评估目标检测算法的鲁棒性。详细的函数和类的使用方法可以参考官方文档。
