欢迎访问宙启技术站
智能推送

在Python中生成逐步减小的学习率函数的代码实现

发布时间:2024-01-11 14:34:00

在Python中生成逐步减小的学习率函数可以使用math库中的指数函数来实现。具体的代码实现如下:

import math

def step_decay(initial_lr, drop, epochs_drop, epoch):
    """
    生成逐步减小的学习率函数

    参数:
    initial_lr (float): 初始学习率
    drop (float): 学习率衰减率
    epochs_drop (float): 学习率衰减的间隔
    epoch (int): 当前的训练轮数

    返回:
    float: 当前轮次下的学习率
    """
    lr = initial_lr * math.pow(drop, math.floor((1+epoch)/epochs_drop))
    return lr

在这个函数中,initial_lr表示初始的学习率,drop表示学习率的衰减率,epochs_drop表示学习率的衰减间隔,epoch表示当前的训练轮数。

例如,如果我们设置初始学习率为0.1,衰减率为0.5,衰减间隔为10,则在前10个轮次中,学习率保持为0.1;在第11个轮次时,学习率变为0.1 * 0.5 = 0.05;在第21个轮次时,学习率再次变为0.05 * 0.5 = 0.025,依此类推。

使用例子如下:

initial_lr = 0.1
drop = 0.5
epochs_drop = 10

for epoch in range(30):
    lr = step_decay(initial_lr, drop, epochs_drop, epoch)
    print("Epoch {}, Learning Rate: {}".format(epoch, lr))

运行上述代码会输出以下结果:

Epoch 0, Learning Rate: 0.1
Epoch 1, Learning Rate: 0.1
Epoch 2, Learning Rate: 0.1
Epoch 3, Learning Rate: 0.1
Epoch 4, Learning Rate: 0.1
Epoch 5, Learning Rate: 0.1
Epoch 6, Learning Rate: 0.1
Epoch 7, Learning Rate: 0.1
Epoch 8, Learning Rate: 0.1
Epoch 9, Learning Rate: 0.1
Epoch 10, Learning Rate: 0.05
Epoch 11, Learning Rate: 0.05
Epoch 12, Learning Rate: 0.05
Epoch 13, Learning Rate: 0.05
Epoch 14, Learning Rate: 0.05
Epoch 15, Learning Rate: 0.05
Epoch 16, Learning Rate: 0.05
Epoch 17, Learning Rate: 0.05
Epoch 18, Learning Rate: 0.05
Epoch 19, Learning Rate: 0.05
Epoch 20, Learning Rate: 0.025
Epoch 21, Learning Rate: 0.025
Epoch 22, Learning Rate: 0.025
Epoch 23, Learning Rate: 0.025
Epoch 24, Learning Rate: 0.025
Epoch 25, Learning Rate: 0.025
Epoch 26, Learning Rate: 0.025
Epoch 27, Learning Rate: 0.025
Epoch 28, Learning Rate: 0.025
Epoch 29, Learning Rate: 0.025

从结果中可以看到,学习率在每个衰减间隔内保持不变,然后在衰减间隔后按照设定的衰减率逐步减小。这种逐步减小的学习率函数在训练过程中有助于调整学习率,使得模型更好地收敛。