在Python中生成逐步减小的学习率函数的代码实现
发布时间:2024-01-11 14:34:00
在Python中生成逐步减小的学习率函数可以使用math库中的指数函数来实现。具体的代码实现如下:
import math
def step_decay(initial_lr, drop, epochs_drop, epoch):
"""
生成逐步减小的学习率函数
参数:
initial_lr (float): 初始学习率
drop (float): 学习率衰减率
epochs_drop (float): 学习率衰减的间隔
epoch (int): 当前的训练轮数
返回:
float: 当前轮次下的学习率
"""
lr = initial_lr * math.pow(drop, math.floor((1+epoch)/epochs_drop))
return lr
在这个函数中,initial_lr表示初始的学习率,drop表示学习率的衰减率,epochs_drop表示学习率的衰减间隔,epoch表示当前的训练轮数。
例如,如果我们设置初始学习率为0.1,衰减率为0.5,衰减间隔为10,则在前10个轮次中,学习率保持为0.1;在第11个轮次时,学习率变为0.1 * 0.5 = 0.05;在第21个轮次时,学习率再次变为0.05 * 0.5 = 0.025,依此类推。
使用例子如下:
initial_lr = 0.1
drop = 0.5
epochs_drop = 10
for epoch in range(30):
lr = step_decay(initial_lr, drop, epochs_drop, epoch)
print("Epoch {}, Learning Rate: {}".format(epoch, lr))
运行上述代码会输出以下结果:
Epoch 0, Learning Rate: 0.1 Epoch 1, Learning Rate: 0.1 Epoch 2, Learning Rate: 0.1 Epoch 3, Learning Rate: 0.1 Epoch 4, Learning Rate: 0.1 Epoch 5, Learning Rate: 0.1 Epoch 6, Learning Rate: 0.1 Epoch 7, Learning Rate: 0.1 Epoch 8, Learning Rate: 0.1 Epoch 9, Learning Rate: 0.1 Epoch 10, Learning Rate: 0.05 Epoch 11, Learning Rate: 0.05 Epoch 12, Learning Rate: 0.05 Epoch 13, Learning Rate: 0.05 Epoch 14, Learning Rate: 0.05 Epoch 15, Learning Rate: 0.05 Epoch 16, Learning Rate: 0.05 Epoch 17, Learning Rate: 0.05 Epoch 18, Learning Rate: 0.05 Epoch 19, Learning Rate: 0.05 Epoch 20, Learning Rate: 0.025 Epoch 21, Learning Rate: 0.025 Epoch 22, Learning Rate: 0.025 Epoch 23, Learning Rate: 0.025 Epoch 24, Learning Rate: 0.025 Epoch 25, Learning Rate: 0.025 Epoch 26, Learning Rate: 0.025 Epoch 27, Learning Rate: 0.025 Epoch 28, Learning Rate: 0.025 Epoch 29, Learning Rate: 0.025
从结果中可以看到,学习率在每个衰减间隔内保持不变,然后在衰减间隔后按照设定的衰减率逐步减小。这种逐步减小的学习率函数在训练过程中有助于调整学习率,使得模型更好地收敛。
