Python中随机生成object_detection.builders.region_similarity_calculator_builder的20个实例
object_detection.builders.region_similarity_calculator_builder是用于生成区域相似度计算器的构建器。区域相似度计算器用于计算目标框和候选框之间的相似度。
下面是使用object_detection.builders.region_similarity_calculator_builder构建器的20个实例,每个实例都带有使用例子:
1. 实例化RegionSimilarityCalculatorBuilder对象:
import object_detection.builders.region_similarity_calculator_builder as region_similarity_builder similarity_calculator_builder = region_similarity_builder.RegionSimilarityCalculatorBuilder()
2. 使用object_detection.builders模块中的默认区域相似度计算器构建器来构建一个区域相似度计算器:
iou_similarity_calculator = similarity_calculator_builder.build('IouSimilarity')
3. 使用自定义参数构建一个区域相似度计算器:
custom_similarity_calculator = similarity_calculator_builder.build(
'CustomSimilarity',
config={
'param1': value1,
'param2': value2,
}
)
4. 使用object_detection.protos模块中定义的区域相似度计算器构建器来构建一个区域相似度计算器:
jaccard_similarity_calculator = similarity_calculator_builder.build(
'JaccardSimilarity',
config={
'iou_threshold': 0.5,
}
)
5. 使用object_detection.builders模块中的默认区域相似度计算器构建器并将其参数化:
iou_similarity_calculator_with_params = similarity_calculator_builder.build_with_params(
'IouSimilarity',
iou_threshold=0.5
)
6. 使用配置文件中定义的区域相似度计算器构建器来构建一个区域相似度计算器(假设配置文件中有一个iou_similarity的区域相似度计算器):
iou_similarity_calculator_from_config = similarity_calculator_builder.build(
'iou_similarity',
config={
'iou_threshold': 0.5,
}
)
7. 构建一个IouSimilarity区域相似度计算器的实例:
iou_similarity_calculator_instance = similarity_calculator_builder.iou_similarity_calculator(iou_threshold=0.5)
8. 构建一个JaccardSimilarity区域相似度计算器的实例:
jaccard_similarity_calculator_instance = similarity_calculator_builder.jaccard_similarity_calculator(iou_threshold=0.5)
9. 构建一个ObjectSimilarity区域相似度计算器的实例:
object_similarity_calculator_instance = similarity_calculator_builder.object_similarity_calculator(
config={
'param1': value1,
'param2': value2,
}
)
10. 获取默认的IOU区域相似度计算器构建器名称:
iou_similarity_calculator_builder_name = similarity_calculator_builder.get_default_args().name
11. 构建一个区域相似度计算器的实例(使用默认构建器和参数):
default_similarity_calculator = similarity_calculator_builder.human_similarity_calculator()
12. 构建一个自定义的区域相似度计算器的实例:
custom_similarity_calculator = similarity_calculator_builder.build_with_cls(
'CustomSimilarity',
config={
'param1': value1,
'param2': value2,
}
)
13. 构建一个联合相似度计算器的实例(从配置文件中获取):
union_similarity_calculator = similarity_calculator_builder.build(
'UnionSimilarity',
config={
'similarity_calculator1': 'IouSimilarity',
'similarity_calculator2': 'JaccardSimilarity',
}
)
14. 获取一个给定名称的区域相似度计算器构建器的默认配置:
default_config = similarity_calculator_builder.get_default_config('IouSimilarity')
15. 将一组区域相似度计算器的配置转换为区域相似度计算器的名称和参数:
similarity_calculator_spec = similarity_calculator_builder._as_similarity_calculator_spec({
'iou_similarity': {
'iou_threshold': 0.5,
},
'jaccard_similarity': {
'iou_threshold': 0.5,
}
})
16. 将一组区域相似度计算器的名称和参数转换为区域相似度计算器的配置:
config = similarity_calculator_builder._from_similarity_calculator_spec({
'iou_similarity': {
'iou_threshold': 0.5,
},
'jaccard_similarity': {
'iou_threshold': 0.5,
}
})
17. 从区域相似度计算器的配置中提取名称和参数:
name, config = similarity_calculator_builder._deserialize_object({'iou_similarity': {'iou_threshold': 0.5}})
18. 将区域相似度计算器的名称和参数序列化为配置字典:
config_dict = similarity_calculator_builder._serialize_object('iou_similarity', {'iou_threshold': 0.5})
19. 获取一个给定名称的区域相似度计算器构建器的默认参数:
default_args = similarity_calculator_builder.get_default_args('IouSimilarity')
20. 获取区域相似度计算器构建器的名称:
builder_name = similarity_calculator_builder.name
以上是使用object_detection.builders.region_similarity_calculator_builder构建器的20个实例,每个实例都带有相应的使用例子。这些实例可以用于在Python中生成区域相似度计算器。
